Astat
Astat [asˈtaːt] (von altgriechisch ἄστατος: „unbeständig, unstet“) ist ein radioaktives chemisches Element mit dem Elementsymbol At und der Ordnungszahl 85. Im Periodensystem steht es in der 7. Hauptgruppe bzw. der 17. IUPAC-Gruppe und zählt damit zu den Halogenen. Astat entsteht beim natürlichen Zerfall von Uran. Astat ist das seltenste natürlich vorkommende Element der Erde, das bei Bedarf künstlich erzeugt werden muss.[9]
Eigenschaften | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemein | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name, Symbol, Ordnungszahl | Astat, At, 85 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elementkategorie | Halogene | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gruppe, Periode, Block | 17, 6, p | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aussehen | metallisch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS-Nummer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Massenanteil an der Erdhülle | 3 · 10−21 ppm[1] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomar [2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atommasse | 209,9871 u | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kovalenter Radius | 150 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van-der-Waals-Radius | 202[3] pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronenkonfiguration | [Xe] 4f14 5d10 6s2 6p5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Ionisierungsenergie | 9.31751(8) eV[4] ≈ 899.00 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Ionisierungsenergie | 17.880(20) eV[4] ≈ 1725 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. Ionisierungsenergie | 26.58(5) eV[4] ≈ 2565 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4. Ionisierungsenergie | 39.65 eV[4] ≈ 3826 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5. Ionisierungsenergie | 50.39 eV[4] ≈ 4862 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6. Ionisierungsenergie | 72.0(2,0) eV[4] ≈ 6950 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7. Ionisierungsenergie | 85.1(2,0) eV[4] ≈ 8210 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physikalisch [6] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aggregatzustand | fest | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzpunkt | 575 K (302 °C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Siedepunkt | 610 (337 °C) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verdampfungsenthalpie | ca. 40 kJ/mol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzenthalpie | ca. 6 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wärmeleitfähigkeit | 2 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemisch [7] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidationszustände | ±1, 3, 5, 7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativität | 2,2 (Pauling-Skala) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotope | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weitere Isotope siehe Liste der Isotope | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gefahren- und Sicherheitshinweise | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Radioaktiv | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Geschichte
Als Dmitri Mendelejew 1869 sein Periodensystem festlegte, sagte er die Existenz einiger zu dieser Zeit noch nicht entdeckter Elemente voraus, darunter eines, das den Platz unter Iod einnehmen würde. In der Folge versuchten einige Wissenschaftler dieses Element, das als „Eka-Iod“ bezeichnet wurde, zu finden.
Im Jahre 1931 behauptete Fred Allison, er und seine Mitarbeiter am Alabama Polytechnic Institute (heute Auburn University) hätten das fehlende Element entdeckt und gaben ihm die Bezeichnung Alabamine (Ab).[10][11] Ihre Entdeckung konnte jedoch nicht bestätigt werden und wurde später als falsch erkannt.
Ebenfalls auf der Suche nach einem Mitglied der Familie des radioaktiven Thoriums fand der Chemiker De Rajendralal Mitra im Jahre 1937 in Dhaka, Bangladesch (damals Britisch-Indien), zwei neue Elemente. Das erste nannte er Dakin (Eka-Iod), wohl nach der englischen Bezeichnung für Dhaka (Dacca), das andere Gourium.[12] Beide Entdeckungen konnten jedoch nicht bestätigt werden.
Der Name Helvetium wurde wiederum von dem Schweizer Chemiker Walter Minder vorgeschlagen, als er die Entdeckung des Elements 85 im Jahr 1940 ankündigte. Er änderte im Jahr 1942 jedoch seinen Vorschlag in Anglohelvetium.[13]
Bestätigt werden konnte die Entdeckung des Astat (altgriechisch ἀστατέω = „unbeständig sein“, aufgrund des radioaktiven Zerfalls) erstmals im Jahre 1940 durch die Wissenschaftler Dale Corson, Kenneth MacKenzie und Emilio Gino Segrè, die es in der University of California künstlich durch Beschuss von Bismut mit Alphateilchen herstellten.[14]
Drei Jahre später konnte das kurzlebige Element von Berta Karlik und Traude Bernert auch als Produkt des natürlichen Zerfallsprozesses von Uran gefunden werden.[15][16]
Gewinnung und Darstellung
Astat wird durch Beschuss von Bismut mit Alphateilchen im Energiebereich von 26 bis 29 MeV hergestellt. Man erhält dabei die relativ langlebigen Isotope 209At bis 211At, die dann im Stickstoffstrom bei 450 bis 600 °C sublimiert und an einer gekühlten Platinscheibe abgetrennt werden.
Eigenschaften
Bei diesem radioaktiven Element wurde mit Hilfe von Massenspektrometrie nachgewiesen, dass es sich chemisch wie die anderen Halogene, besonders wie Iod verhält (es sammelt sich wie dieses in der Schilddrüse an). Astat ist stärker metallisch als Iod. Forscher am Brookhaven National Laboratory haben Experimente zur Identifikation und Messung von elementaren chemischen Reaktionen durchgeführt, die Astat beinhalten.
Mit dem On-Line-Isotopen-Massenseparator (ISOLDE) am CERN wurde 2013 das Ionisationspotenzial von Astat mit 9,31751(8) Elektronenvolt bestimmt.[17]
Isotope
Astat hat etwa 20 bekannte Isotope, die alle radioaktiv sind; das langlebigste ist 210At mit einer Halbwertszeit von 8,3 Stunden.
Verwendung
Organische Astatverbindungen dienen in der Nuklearmedizin zur Bestrahlung bösartiger Tumoren. Astat-Isotope eignen sich aufgrund der kurzen Halbwertszeiten innerlich eingenommen als radioaktive Präparate zum Markieren der Schilddrüse. Das Element wird in der Schilddrüse angereichert und in der Leber gespeichert.[18]
Verbindungen
Die chemischen Eigenschaften von Astat konnten aufgrund der geringen Mengen bisher nur mit Tracerexperimenten festgestellt werden. Sie ähneln stark denjenigen des Iods, wobei es aber ein schwächeres Oxidationsmittel ist. Bisher konnten diverse Astatide, Interhalogenverbindungen und organische Verbindungen nachgewiesen werden. Auch die Anionen der entsprechenden Sauerstoffsäuren sind bekannt. Wegen des im Vergleich zu anderen Halogenen elektropositiveren Charakters wird es von Silber nur unvollständig ausgefällt. Dafür existiert das komplexstabilisierte Kation At(Py)2 (Py=Pyridin), wodurch Astat auch kathodisch abgeschieden werden kann. Nachgewiesen wurde auch das Hydrid, Astatwasserstoff HAt.
Sicherheitshinweise
Einstufungen nach der CLP-Verordnung liegen nicht vor, weil diese nur die chemische Gefährlichkeit umfassen und eine völlig untergeordnete Rolle gegenüber den auf der Radioaktivität beruhenden Gefahren spielen. Auch Letzteres gilt nur, wenn es sich um eine dafür relevante Stoffmenge handelt.
Literatur
- A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 443.
- Eric Scerri: A tale of seven elements. Oxford University Press, Oxford 2013, ISBN 978-0-19-539131-2.
Einzelnachweise
- Harry H. Binder: Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
- Die Werte der atomaren und physikalischen Eigenschaften (Infobox) sind (soweit nicht anders angegeben) aus www.webelements.com (Astat) entnommen.
- Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: Consistent van der Waals Radii for the Whole Main Group. In: J. Phys. Chem. A. Band 113, 2009, S. 5806–5812, doi:10.1021/jp8111556.
- Eintrag zu astatine in Kramida, A., Ralchenko, Yu., Reader, J. und NIST ASD Team (2019): NIST Atomic Spectra Database (ver. 5.7.1). Hrsg.: NIST, Gaithersburg, MD. doi:10.18434/T4W30F (https://physics.nist.gov/asd). Abgerufen am 13. Juni 2020.
- Eintrag zu astatine bei WebElements, https://www.webelements.com, abgerufen am 13. Juni 2020.
- Die Werte der atomaren und physikalischen Eigenschaften (Infobox) sind (soweit nicht anders angegeben) aus www.webelements.com (Astat) entnommen.
- Die Werte der atomaren und physikalischen Eigenschaften (Infobox) sind (soweit nicht anders angegeben) aus www.webelements.com (Astat) entnommen.
- Die von der Radioaktivität ausgehenden Gefahren gehören nicht zu den einzustufenden Eigenschaften nach der GHS-Kennzeichnung. In Bezug auf weitere Gefahren wurde dieses Element entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
- Wolfgang W. Merkel: Astat ist das seltenste Element auf der Erde. In: Welt.de, 3. September 2011, abgerufen am 4. September 2011.
- Fred Allison, Edgar J. Murphy, Edna R. Bishop, Anna L. Sommer: Evidence of the Detection of Element 85 in Certain Substances. In: Phys. Rev. Band 37, 1931, S. 1178–1180, doi:10.1103/PhysRev.37.1178.
- R. F. Trimble: What happened to alabamine, virginium, and illinium? In: J. Chem. Educ. Band 52, 1975, S. 585, doi:10.1021/ed052p585.
- 85 Astatine.
- Alice Leigh-Smith, Walter Minder: Experimental Evidence of the Existence of Element 85 in the Thorium Family. In: Nature. Band 150, 1942, S. 767–768, doi:10.1038/150767a0.
- D. R. Corson, K. R. MacKenzie, E. Segrè: Artificially Radioactive Element 85. In: Phys. Rev. Band 58, 1940, S. 672–678, doi:10.1103/PhysRev.58.672.
- Berta Karlik, Traude Bernert: Eine neue natürliche α-Strahlung. In: Naturwissenschaften. Band 31, Nr. 25–26, 1943, S. 289–299, doi:10.1007/BF01475613.
- Berta Karlik, Traude Bernert: Das Element 85 in den natürlichen Zerfallsreihen. In: Zeitschrift für Physik. Band 123, Nr. 1–2, 1943, S. 51–72, doi:10.1007/BF01375144.
- Welt der Physik: Fundamentale Eigenschaften des seltensten natürlichen Elements vermessen (Memento vom 18. Juni 2013 im Internet Archive) (Deutsche Physikalische Gesellschaft e.V. über das Ionisationspotential von Astat) 2013.
- M. J. Willhauck, B. R. Samani, I. Wolf u. a.: The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer. In: Eur. J. Nucl. Med. Mol. Imaging. Band 35, Nr. 7, Juli 2008, S. 1272–1281, doi:10.1007/s00259-008-0775-4, PMID 18404268.