Atommasse
Die Atommasse, die Masse eines einzelnen Atoms, kann wie jede Masse in der SI-Einheit Kilogramm (kg) angegeben werden. In der Regel wird die Masse eines Atoms aber in atomaren Masseneinheiten ausgedrückt,
Es ist , wobei die eingeklammerte Zahl 50 die derzeitige Messunsicherheit der beiden letzten angegebenen Dezimalstellen angibt.
Die Einheit , früher mit (atomic mass unit) bezeichnet, ist ein Zwölftel der Masse eines Atoms des Kohlenstoff-Isotops 12C. Sie ist damit ca. 8‰ kleiner als die Masse eines Wasserstoffatoms 1H. Die Wahl gerade dieser Größe ist u. a. dadurch motiviert, dass dann die Zahlenwerte für alle bekannten Nuklide nahe bei einer ganzen Zahl liegen.
In der Biochemie, in den USA auch in der organischen Chemie, wird die atomare Masseneinheit auch als Dalton bezeichnet (Einheitenzeichen: Da), benannt nach dem englischen Naturforscher John Dalton.
In der Chemie wird auf Empfehlung der IUPAC[1] der Zahlenwert für sich allein, ohne Einheit, als relative Atommasse (engl. atomic weight) bezeichnet und formal als eine eigene, dimensionslose Größe aufgefasst, nämlich als das Massenverhältnis des jeweiligen Atoms zu einem gedachten Atom der Masse . Im Unterschied zu dieser relativen Atommasse wird die in kg, g oder u angegebene Masse als absolute Atommasse (engl. atomic mass) bezeichnet.
Die Atommassen der Nuklide sind annähernd ganzzahlige Vielfache der Masse des Wasserstoffatoms. Die Abweichungen zur nächsten ganzen Zahl werden durch die unterschiedlichen Massen von Proton und Neutron und den Massendefekt erklärt. In Listen wie Atomic Mass Adjustment 2012[2] und in interaktiven Nuklidkarten wird anstelle der Atommasse oft der Massenexzess angegeben, manchmal sowohl Massenexzess als auch Atommasse.
Aus den Atommassen, den daraus berechenbaren Molekülmassen und anhand der daraus abgeleiteten molaren Masse lassen sich die Massenverhältnisse der an einer chemischen Reaktion beteiligten Stoffe berechnen.
Die durchschnittliche Atommasse eines Mischelements wird als gewichtetes arithmetisches Mittel der Atommassen der Isotope mit den natürlichen Häufigkeiten der Isotope als Gewichten berechnet. In der Chemie wird diese durchschnittliche Atommasse als Atomgewicht des Elements bezeichnet.[1][3]
Historisches
Die erste Tabelle mit relativen Atommassen wurde 1805 von John Dalton veröffentlicht. Er erhielt sie anhand der Massenverhältnisse bei chemischen Reaktionen, wobei er das leichteste Atom, das Wasserstoffatom, als „Masseneinheit“ wählte (siehe Atomare Masseneinheit) – dies jedoch in Unkenntnis der Eigenschaft des Wasserstoffes als zweiatomiges Molekül.
Weitere relative Atom- und Molekülmassen wurden für gasförmige Elemente und Verbindungen auf der Grundlage des Avogadroschen Gesetzes berechnet, das heißt durch Abwiegen und Vergleichen bekannter Gasvolumina, später auch mit Hilfe der Faradayschen Gesetze. Avogadro bezeichnete die kleinsten denkbaren Teile noch als Moleküle. Berzelius führte dann den Begriff Atom für den kleinsten denkbaren Teil eines Stoffes ein. Willkürlich setzte er das Atomgewicht von Sauerstoff gleich 100. Spätere Forscher wählten den leichtesten Stoff, Wasserstoff, als Standard, setzten jedoch das Wasserstoffmolekül gleich 1. Für Kohlenstoff erhielten sie dann das „Äquivalentgewicht“ 6, für Sauerstoff 8.
Eigentlicher Wegbereiter für korrekte Atomgewichte von Elementen war Jean Baptiste Dumas. Er bestimmte für 30 Elemente sehr exakt die Atomgewichte und fand, dass 22 Elemente Atomgewichte hatten, die Vielfache des Atomgewichts von Wasserstoff sind.
Erst Stanislao Cannizzaro führte im Jahr 1858 die heutige Unterscheidung zwischen Atom und Molekül ein. Er nahm an, dass ein Molekül Wasserstoff aus zwei Atomen Wasserstoff bestehe. Für das einzelne Wasserstoffatom setzte er willkürlich das Atomgewicht 1 fest, ein Wasserstoffmolekül hat folglich eine Molekülmasse von 2. 1865 wurde Sauerstoff, dessen Atome im Mittel annähernd die 16-fache Masse des Wasserstoffatoms haben, von Jean Servais Stas als Bezugselement vorgeschlagen und ihm die Masse 16,00 zugeteilt.
1929 entdeckten W. F. Giauque und H. L. Johnston, dass Sauerstoff drei Isotope besitzt. Das bewog die IUPAP, eine Massenskala einzuführen, die auf m(16O) basiert, während die IUPAC fortfuhr, die Ar(O) = 16, also Sauerstoff in seiner natürlichen Isotopenzusammensetzung, zu verwenden.
1957 schlugen A. O. Nier und A. Ölander unabhängig voneinander vor, dass Ar(12C) und m(12C) = 12 u die alten atomaren Masseneinheiten ersetzen sollten. Darauf einigten sich IUPAP und IUPAC dann in den Jahren 1959–1961.[4] Bis zu dieser Zeit hatten folglich die Physiker und die Chemiker zwei leicht unterschiedliche Massenskalen. Im Jahr 1960 publizierten F. Everling, L. A. König, Josef Mattauch und Aaldert Wapstra Massen von Nukliden.[5]
Bis heute dient das Kohlenstoffisotop 12C mit der Masse von 12 u als Bezugsbasis. Die Atommasse gibt an, wievielmal größer die Masse des jeweiligen Atoms als 1/12 der Masse des 12C-Atoms ist. Wie oben erwähnt sind die Atommassen der Nuklide annähernd, aber nicht genau, ganzzahlige Vielfache der Masse des Wasserstoffatoms.
Die folgende Tabelle zeigt einige durchschnittliche (siehe unten) relative Atommassen, also Atomgewichte, je nach den vier verschiedenen Bezugsmassen:
Messung, Datensammlungen
Genaue Atommassen werden heute mit Massenspektrometern bestimmt. Dabei ergeben sich die Atommassen der einzelnen Isotope sehr präzise. Zur Bestimmung der Atommassen der Elemente in ihrer natürlichen Isotopenzusammensetzung (Atomgewichte) muss dann noch das Isotopenverhältnis ermittelt werden. Für Zwecke der Chemie wird diese durchschnittliche Atommasse des natürlichen Isotopengemisches in der Erdkruste angegeben; in Spezialfällen muss die Herkunft des Isotopengemisches beachtet werden.
Weitere Beispiele für die relativen Atomgewichte einiger chemischer Elemente:
Eine von Aaldert Wapstra begründete internationale Expertengruppe sammelt seit etwa 1955 aus Originalpublikationen Messergebnisse der Atommassen aller bekannten Nuklide und bildet daraus eingeschätzte (d. h. evaluierte, fachmännisch bewertete) gewichtete Mittelwerte. Die Ergebnisse wurden bis zum Jahr 2003 in der Fachzeitschrift Nuclear Physics A veröffentlicht.[6] Die Geschichte der Messung der Massen der Nuklide und ihrer Einschätzungen hat Wapstras Mitautor Georges Audi im Jahr 2006 zusammengefasst.[7] Seine Arbeit enthält auch viele Literaturverweise zu dieser Geschichte. Den jeweils neuesten Stand der eingeschätzten Atommassen veröffentlicht die Gruppe etwa alle zehn Jahre, zuletzt (Stand 2016) im Jahr 2012 unter dem Namen Ame2012 (Atomic mass evaluation) in der Fachzeitschrift Chinese Physics. Die Datenliste dieser Auswertung ist von einigen Servern kostenlos abrufbar.[2]
Für Atomgewichte im chemischen Sinn kann eine Microsoft Excel-97-2003-Arbeitsmappe der IUPAC mit dem Titel Table of Standard Atomic Weights 2013 aus dem Netz abgerufen werden.[8] Für das Mischelement Eisen z. B. findet man dort als aktuell besten Wert der durchschnittlichen Masse eines neutralen Atoms (die Ziffer in Klammern gibt die Unsicherheit der letzten Stelle an).
Weblinks
Einzelnachweise
- J. R. de Laeter et al.: Atomic weights of the elements: Review 2000 (IUPAC technical report). In: Pure and applied chemistry. Band 75, Nr. 6, 2003, S. 683–800 (online [PDF; abgerufen am 27. März 2018]). S. 687 f: „Als Tomas Batuecas, Präsident des Atomic Weight Committee, die Autoritäten im IUPAC Bureau 1963 überredete, den Begriff in atomic mass (Atommasse) zu ändern, revoltierten traditionelle Chemiker, atomic weight (Atomgewicht) wurde beibehalten und Edward Wichers, der früher Kommissionspräsident war, wurde stillschweigend wieder zum Vorsitzenden der Atomic Weight Commission gemacht.“
- G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer: The Ame2012 atomic mass evaluation. Chinese Physics C Band 36 (2012), Seite 1287–1602, Atomic Mass Adjustment 2012.
- Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten: Chemie: Studieren kompakt, 10., aktualisierte Auflage, München 2011, S. 51.
- G. Audi, The History of Nuclidic Masses and of their Evaluation, Int.J.Mass Spectr.Ion Process. 251 (2006) 85-94, arxiv
- F. Everling, L. A. König, J. M. E. Mattauch, A. H. Wapstra: Relative nuclidic masses. In: Nucl. Phys. A. Band 18, 1960, S. 529–569.
- G. Audi, A. Wapstra: The 1993 atomic mass evaluation: (I) Atomic mass table. Nuclear Physics A, Band 565 (1993) S. 1–65, doi:10.1016/0375-9474(93)90024-R
- Georges Audi: The history of nuclidic masses and of their evaluation. In: International Journal of Mass Spectrometry. Band 251, Nr. 2–3, 2006, S. 85–94, doi:10.1016/j.ijms.2006.01.048 (online [PDF; abgerufen am 28. Dezember 2017]).
- IUPAC, Standard Atomic Weights Revised 2013.