Ausdehnungskoeffizient
Der Ausdehnungskoeffizient oder Wärmeausdehnungskoeffizient ist ein Kennwert, der das Verhalten eines Stoffes bezüglich Veränderungen seiner Abmessungen bei Temperaturveränderungen beschreibt – deswegen oft auch thermischer Ausdehnungskoeffizient genannt. Der hierfür verantwortliche Effekt ist die Wärmeausdehnung. Die Wärmeausdehnung ist abhängig vom verwendeten Stoff, es handelt sich also um eine stoffspezifische Materialkonstante. Da die Wärmeausdehnung bei vielen Stoffen nicht gleichmäßig über alle Temperaturbereiche erfolgt, ist auch der Wärmeausdehnungskoeffizient selbst temperaturabhängig und wird deshalb für eine bestimmte Bezugstemperatur oder einen bestimmten Temperaturbereich angegeben.
Es wird zwischen dem thermischen Längenausdehnungskoeffizienten α (auch linearer Wärmeausdehnungskoeffizient), dem thermischen Flächenausdehnungskoeffizienten β (auch flächiger oder quadratischer Ausdehnungskoeffizient) und dem thermischen Raumausdehnungskoeffizienten γ (auch räumlicher oder Volumen- oder kubischer Ausdehnungskoeffizient) unterschieden. Da im Allgemeinen die Ausdehnungskoeffizienten kleine Zahlenwerte darstellen, gilt:
- und .
Längenausdehnungskoeffizient
Der Längenausdehnungskoeffizient eines Festkörpers mit der Länge ist die Proportionalitätskonstante zwischen der Temperaturänderung und der relativen Längenänderung . Mit ihm wird demnach die relative Längenänderung bei einer Temperaturänderung beschrieben. Er ist eine stoffspezifische Größe, die die Einheit („pro Kelvin“ gesprochen) hat und über die folgende Gleichung definiert ist:
Die temperaturabhängige Länge eines Stabes kann über die Lösung dieser Differentialgleichung berechnet werden, sie lautet:
Bei einem von der Temperatur unabhängigen Ausdehnungskoeffizienten wird daraus zusammen mit der ursprünglichen Länge bei gleichmäßiger Erwärmung oder Abkühlung um die Temperaturdifferenz :
Für die meisten Anwendungen ist es ausreichend, folgende Näherung zu verwenden, bei der die Exponentialfunktion durch die ersten beiden Glieder ihrer Taylorreihe angenähert wurde:
Die Längenänderung in linearer Näherung lautet somit:
Bei anisotropen Festkörpern ist der Längenausdehnungskoeffizient ebenfalls richtungsabhängig. Dies ist insbesondere bei der Verwendung von Tabellenwerten aus der Literatur zu beachten.
Beispiele
Aluminium hat einen Wärmeausdehnungskoeffizient . Das bedeutet, dass sich ein 1000 Meter langes Aluminiumstück bei einer Temperaturerhöhung von 1 Kelvin um 2,31 cm ausdehnt.
Ein 8 Meter langes Aluminiumstück, das um 70 Kelvin erwärmt wird, dehnt sich um 1,3 Zentimeter aus, denn
Letzteres Beispiel beschreibt z. B. acht seitlich aneinandergeschraubte Solarmodule mit Aluminiumrahmen und deren ungefähren maximalen Temperaturunterschied zwischen Sommer (sonnenbestrahltes Aluminium) und Winter (Lufttemperatur in der Nacht). Man erkennt daran, dass die Wärmeausdehnung bei der Konstruktion der Befestigungs- und Rahmenbauteile berücksichtigt werden muss, z. B. durch flexible oder verschiebbare Befestigungselemente.
Raumausdehnungskoeffizient
Der Raumausdehnungskoeffizient hat wie der Längenausdehnungskoeffizient die Einheit . Er gibt das Verhältnis zwischen der relativen Volumenzunahme und der Temperaturänderung eines Körpers an. Mathematisch ist er definiert durch:
wobei die den partiellen Ableitungen als Index nachgestellten Größen Druck und Teilchenzahl konstant zu halten sind. Die temperaturabhängige Lösung hierfür lautet analog zu oben:
Bei einem von der Temperatur unabhängigen Raumausdehnungskoeffizient ergibt sich zusammen mit :
Ebenso wie für den Längenausdehnungskoeffizienten kann hier die Linearisierung als Näherung für kleine Temperaturänderungen benutzt werden:
Mit einer Maxwell-Relation ist es möglich, den Raumausdehnungskoeffizienten mit der Entropie in Verbindung zu bringen:
Da die Masse wegen der Massenerhaltung temperaturunabhängig ist, ergibt sich der Raumausdehnungskoeffizient aus der Dichte in Abhängigkeit von der Temperatur:
Ist der Ausdehnungskoeffizient als Funktion der Temperatur bekannt, so ergibt sich die Dichte aus:
Hierbei ist eine beliebige Temperatur, z. B. , bei der die Dichte bekannt ist.
Eduard Grüneisen hat gezeigt, dass der Quotient zwischen dem thermischen Ausdehnungskoeffizienten und der spezifischen Wärmekapazität näherungsweise unabhängig von der Temperatur ist.
Im Allgemeinen ist der Wärmeausdehnungskoeffizient eine positive Größe. Wegen des Massenerhaltungssatzes geht daher bei den meisten Stoffen eine Temperaturerhöhung mit einer Verringerung der Dichte einher. Manche Stoffe, wie beispielsweise Wasser zwischen und , zeigen jedoch in bestimmten Temperaturbereichen das als Dichteanomalie bezeichnete Verhalten, bei dem ein negativer Ausdehnungskoeffizient beobachtet wird. Außerdem gibt es Materialien, wie zum Beispiel einige Arten von Glaskeramik, deren Wärmeausdehnungskoeffizient nahezu null ist.
Der Wärmeausdehnungskoeffizient kann auf empirischem Wege durch Messungen ermittelt werden und gilt nur für den Stoff und für den Temperaturbereich, an dem beziehungsweise in dem die Messung erfolgte.
Zusammenhang zwischen Längen- und Raumausdehnungskoeffizienten
Für isotrope Festkörper kann das Dreifache des Längenausdehnungskoeffizienten verwendet werden, um die Volumenausdehnung zu berechnen:
Dies gilt aber nur näherungsweise für geringe Temperaturdifferenzen. Siehe dazu die folgenden Unterkapitel.
Die genannte (Grenzwert)formel für kleine Temperaturdifferenzen weist bei der Berechnung des Volumenausdehnungskoeffizienten von Aluminium einen relativen prozentualen Fehler von ca. −0,1 % auf, wenn die Temperaturdifferenz des Ausdehnungsversuches 50 K ist. Bei 200 K erreicht der relative Fehler des kubischen Ausdehnungskoeffizienten fast −0,5 %. Es wird jeweils ein etwas zu niedriger Wert des kubischen Ausdehnungskoeffizienten mit dieser Formel berechnet für große Temperaturdifferenzen.
Herleitung der Temperatur(differenz)abhängigkeit
Aus der Ausdehnung eines Würfels lässt sich die Gleichung der Temperatur(differenz)abhängigkeit der Verknüpfung beider mittlerer Ausdehnungskoeffizienten, also des linearen und des kubischen, eines Ausdehnungsversuches herleiten:
- Die Anfangswerte des Versuches sind (Anfangs-Kantenlänge) und (Anfangs-Volumen).
- Die Endwerte nach der thermischen Ausdehnung sind: und .
Es gilt: und .
Für die Längenänderung durch thermische Ausdehnung gilt: .
Das Volumen des Würfels nach der Ausdehnung, , ergibt sich zu:
- .
Nach Ausmultiplizieren des kubischen Binoms folgt somit:
- .
Durch subtrahieren des Anfangsvolumens folgt daraus die aus der thermischen Ausdehnung resultierende Volumenänderung des Würfels:
- und damit:
- .
Nun wird in der Definitionsgleichung des kubischen Ausdehnungskoeffizienten das Differenzvolumen substituiert (ausgetauscht) durch diese Gleichung:
- .
Es folgt durch substituieren von und :
- .
Kürzen von unter und über dem Bruchstrich sowie Kürzen von führt letztlich zu folgender Gleichung, die die Abhängigkeit beider Ausdehnungskoeffizienten bei einem Ausdehnungsversuch mit realen (endlichen) nichtdifferentiellen Temperaturdifferenzen beschreibt:
- .
Als Grenzwert zeigt diese Gleichung die bekannte Gleichung für den Fall, dass die Temperaturdifferenz gegen Null geht.
Hinweis: durch das Kürzen der Temperaturdifferenz (unter dem Bruchstrich) reduzierte sich der Exponent (Hochzahl) der Temperaturdifferenzen (über dem Bruchstrich) in dieser Gleichung jeweils um den Wert 1 und ist damit immer kleiner als der des mittleren linearen Ausdehnungskoeffizienten . Für „reale“ Temperaturdifferenzen (bis zu mehreren Tausend Kelvin) ist der linke additive Term in der genannten Gleichung nicht praktisch relevant, da der lineare Ausdehnungskoeffizient als Kubikzahl (dritte Potenz) praktisch keinen relevanten Zuwachs zum kubischen Ausdehnungskoeffizienten leistet.
Sonderfall differentieller Temperaturdifferenzen des Ausdehnungsversuches
Für isotrope Festkörper gilt, dass sich die Längenänderung in allen drei Raumrichtungen gleich verhält. Das Volumen eines Quaders ist gegeben durch das Produkt seiner Kantenlängen . Das vollständige Differential des Volumens lautet dann:
Eingesetzt in die Definition des Raumausdehnungskoeffizienten ergibt sich:
Aufgrund der vorausgesetzten Isotropie sind die drei Terme auf der rechten Seite jeweils gleich dem Längenausdehnungskoeffizienten, es gilt also:
Für isotrope Festkörper kann also das Dreifache des Längenausdehnungskoeffizienten verwendet werden, um die Volumenausdehnung zu berechnen, wenn die Temperaturdifferenzen gering sind.
Bestimmung aus realen Temperatur-, Volumen- oder Dichtedifferenzen
Praktisch ist es nicht einfach, den Ausdehnungskoeffizient mit kleinen Temperaturdifferenzen zu bestimmen. Man wendet größere Differenzen an. Andernfalls gerät man schnell an die Grenzen der Messtechnik/Messgenauigkeit.
Aus den Definitionsgleichungen für Längenausdehnungskoeffizienten und Volumenausdehnungskoeffizienten folgen die zwei Grundgleichungen der Ausdehnung:
- und
- .
Für alle Feststoffe und Flüssigkeiten, die keine Dichteanomalie aufweisen, gilt daher:
- und für .
Die Ausdehnungskoeffizienten sind hier Mittelwerte für den Temperaturbereich von Anfangstemperatur bis Endtemperatur des Versuchs. Nun kann man die Definitionsgleichung des Würfelvolumens bzw. als Volumen oder als Kantenlänge ( oder ) in eine der beiden Gleichungen einführen. Danach setzt man das Endvolumen oder die Endlänge beider Gleichungen einander gleich. Durch Teilen durch Anfangsvolumen oder Anfangslänge entstehen die Quotienten von Länge und Volumen. Die Dichten sind umgekehrt proportional zu den Volumina; spezifische Volumina sind direkt proportional zu den Volumina. Dies führt auf folgende Relation zwischen Längen , Volumina , spezifischen Volumina und Dichten bei realen (nicht-differenziellen) Temperaturdifferenzen eines Ausdehnungsversuches:
Wie man sieht sind mittlerer Längenausdehnungskoeffizient und mittlerer Volumenausdehnungskoeffizient für endliche Temperaturdifferenzen nur ineinander (exakt) umrechenbar, wenn die Temperaturdifferenz bekannt ist:
- und
- .
Ist die Temperaturdifferenz des Versuches genau 1 K, vereinfachen sich die vorstehenden drei Gleichungen erheblich.
Alternative Definitionsgleichungen für reale Temperaturdifferenzen
für und (analog auch für Längen und Volumen) gilt:
Die Dichtequotienten sind den Volumenquotienten jeweils indirekt proportional.
Zahlenwerte von Ausdehnungskoeffizienten
Feststoffe
Für Feststoffe werden in der Regel Längenausdehnungskoeffizienten verwendet. Da viele Materialien isotrop sind, können diese, wie oben beschrieben, auch zur Beschreibung der Volumenausdehnung verwendet werden. Für anisotrope Stoffe gelten verschiedene Ausdehnungskoeffizienten für die unterschiedlichen Raumrichtungen. Starke Anisotropie zeigen einige Verbundwerkstoffe, wie das Naturprodukt Holz: Die Ausdehnung quer zur Faser ist etwa zehnmal größer als längs der Faser.[1]
Ebenfalls stark anisotrop ist das Verhalten von Kohlenstofffasern, welche in Faserrichtung sogar einen leicht negativen Ausdehnungskoeffizienten aufweisen. Mittels CFK ergibt sich damit die Möglichkeit, Bauteile herzustellen, die in gewünschten Vorzugsrichtungen bei Temperaturänderungen keine oder nur minimale Größenänderungen aufweisen.
Die Legierung Invar wurde speziell entwickelt, um einen kleinen Ausdehnungskoeffizienten zu erhalten. Durch kleine Abweichungen der Zusammensetzung schwankt der Ausdehnungskoeffizient für diesen Stoff relativ stark.
Kunststoffe (Polymere) sind von der Struktur und den Eigenschaften sehr vielfältig und bestehen meist aus einem Gemisch verschiedener reiner Stoffe. Der Ausdehnungskoeffizient schwankt entsprechend mit der tatsächlichen Zusammensetzung, ist aber in der Regel deutlich höher als für Metalle, das heißt größer als 50 · 10−6 K−1.[2] Unterhalb ihres Glasübergangs haben Polymere, bzw. allgemein amorphe Feststoffe, in der Regel einen deutlich kleineren Ausdehnungskoeffizienten als oberhalb.
Reinmetalle (Elemente)
Bezeichnung | α in 10−6 K−1 |
---|---|
Aluminium[3] | 23,1 |
Blei[3] | 28,9 |
Eisen[3] | 11,8 |
Nickel[3] | 13,0 |
Gold[3] | 14,2 |
Iridium[4] | 7 |
Kupfer[3] | 16,5 |
Lithium[4] | 58 |
Magnesium[3] | 24,8 |
Natrium[4] | 7,1 |
Platin[3] | 8,8 |
Silber[3] | 18,9 |
Tantal[5] | 6,6 |
Titan[3] | 8,6 |
Zink[3] | 30,2 |
Zinn[3] | 22,0 |
Das „Tabellenbuch Chemie“ (Autorenkollektiv Kaltofen, DDR, dicke Version), siehe Literaturempfehlung, nennt für viele weitere Metalle die Ausdehnungskoeffizienten.
Nichtmetalle und Halbmetalle (Elemente)
Bezeichnung | α in 10−6 K−1 |
---|---|
Diamant[3] | 1,18 |
Germanium[3] | 5,8 |
Graphit[2] | 1,9 bis 2,9 |
weißer Phosphor[4] | 125 |
rhombischer Schwefel[4] | 74 |
Silizium[3] | 2,6 |
Metalllegierungen
Bezeichnung | α in 10−6 K−1 |
---|---|
Aluminiumbronze[4] | 15 bis 16 |
Bronze[6] | 17,5 |
„Indilatans Extra“ (Krupp) (36Ni,XX) bei 12 bis 100 °C[7] | −0,04 |
Invar[3] | 0,55 bis 1,2 |
Konstantan (bei −191 bis 16 °C)[7] | 12,22 |
Messing[6] | 18,4 bis 19,3 |
Platin-Iridium[4] | 8,9 |
Stahl | 11 bis 13 |
Baustoffe
Bezeichnung | α in 10−6 K−1 |
---|---|
Beton | 12 |
Holz (Eiche)[8] | 8 |
Klinker (Hartbrandziegel)[9][10] | 2,8 bis 4,8 |
Ziegelstein[8] | 5 |
Kunststoffe
Bezeichnung | α in 10−6 K−1 |
---|---|
Weichgummi[10] | 17 bis 28 |
Hartgummi[10] | 80 |
Polyamid (PA)[11] | 60 bis 150 |
Polycarbonat (PC)[11] | 60 bis 70 |
Polyethylen (HD-PE)[11] | 150 bis 200 |
Polypropylen (PP)[12] | 100 bis 200 |
Polyoxymethylen (POM)[11] | 70 bis 130 |
Polytetrafluorethylen (PTFE)[11] | 100 bis 160 |
Polyvinylchlorid (Hart-PVC)[11] | 70 bis 100 |
Polymethylmethacrylat (PMMA, Plexiglas)[11] | 75 bis 80 |
Glas und Keramik
Bezeichnung | α in 10−6 K−1 |
---|---|
Borosilikatglas[13] | 3,3 |
Deutsches Einschmelzglas (für Verbindungen mit Platin oder Invar)[4] | 9,0 |
Duranglas/ Pyrexglas[4] | 3,6 |
Emaille (Emaillebeschichtungen)[11] | 8,0 bis 9,5 |
Fensterglas[8] | 10 |
Jenaer Geräteglas „Nr.20“[4] | 4,8 |
Porzellan, Berliner[4] | 4 bis 6 |
Porzellan, Meißner[4] | 3 bis 5 |
Quarzglas (Siliziumdioxid)[14] | 0,54 |
Technische Keramik[15] | 2 bis 13 |
Zerodur (Glaskeramik)[16] | 0 ± 0,007 |
Zu weiteren Substanzen, aus denen keramische Produkte (Werkstücke) gefertigt werden, siehe „Verbindungen und Chemikalien“.
Chemische Verbindungen
Bezeichnung | α in 10−6 K−1 |
---|---|
Aluminiumoxid, kristallin (Korund)[6] | 5,6 bis 7,0 |
Eis (−5 °C bis 0 °C)[17][18] | 51 bis 71 |
Glimmer (Magnesiumsilikat)[6] | 13,5 |
Magnesiumoxid[4] | 13,1 |
Siliziumdioxid (Quarz)[19] | 12 bis 16 |
Temperaturabhängigkeit für Feststoffe
Im Chemieanlagenbau werden oft mittlere Ausdehnungskoeffizienten herangezogen für den betrachteten Temperaturbereich, in dem eine Anlage arbeiten soll. Zahlenwerte von Ausdehnungskoeffizienten bei erhöhten Temperaturen sind aber in populärwissenschaftlicher Literatur schwer zu finden. Dietzel[20] nennt aber für einige Behältermaterialien mittlere Ausdehnungskoeffizienten für zwei Temperaturbereiche (0 bis 100 °C und 0 bis 200 °C), Zitat (Tabelle):
Bezeichnung | α in 10−6 K−1 | |
---|---|---|
0 bis 100 °C | 0 bis 200 °C | |
Aluminium (rein) | 23,9 | 24,6 |
Grauguß | 10,4 | 11,1 |
technisches Glas | 6,0 | 6,5 |
Messing | 18,3 | 19,3 |
Stahl (bis 0,5 %C) | 11,0 | 12,0 |
Diese Werte zeigen den Anstieg des mittleren Ausdehnungskoeffizienten in K−1 für Feststoffe mit ansteigender Temperatur. Zwischen den Mittelwerten der Temperaturen (50 °C und 100 °C) beider Temperaturbereiche liegen 50 K Temperaturdifferenz.
Flüssigkeiten
Für Flüssigkeiten kann der Raumausdehnungskoeffizient angegeben werden. Sie dehnen sich isotrop, also in alle Richtungen gleichermaßen aus. Ihre Form wird durch das sie beinhaltende Gefäß vorgegeben, weshalb es sich nicht anbietet, den Längenausdehnungskoeffizienten für sie zu bestimmen, obwohl er formal berechnet werden kann.
Flüssigkeiten haben in der Regel einen deutlich größeren Ausdehnungskoeffizienten als Feststoffe. Deshalb werden Angaben für sie oft in Tausendstel pro Kelvin gemacht, anstelle von Millionstel pro Kelvin für Feststoffe. In den Tabellen dieses Abschnitts sind die Einheiten dementsprechend gewählt.
Anorganische Flüssigkeiten, Elemente und flüssige Metalle/Metalllegierungen
Bezeichnung | γ in 10−3 K−1 |
---|---|
Brom[4][7] | 1,11 oder 1,13 |
Galinstan (eutektische Thermometerflüssigkeit) | 0,126 |
NaK (eutektische Legierung) | 0,16 |
Quecksilber[3] | 0,1811 |
Salpetersäure (100%ige)[7] | 1,24 |
Salzsäure[11] | 0,30 |
Schwefelkohlenstoff[7] | 1,18 |
Schwefelsäure (ca.99%ig)[7] | 0,57 |
Wasser bei 0 °C | −0,068 |
Wasser bei ca. 20 °C | 0,2064 |
Wasser bei 100 °C | 0,782 |
Organische Flüssigkeiten
Bezeichnung | γ in 10−3 K−1 | chemische Gruppe |
---|---|---|
Benzin (bei 0 °C)[8] | 1,0 | Paraffine |
n-Heptan[4] | 1,09 | Paraffine |
Heizöl/ Dieselkraftstoff[11] | 0,96 | Paraffine |
n-Hexan[4] | 1,35 | Paraffine |
Mineralöl, Hydrauliköl | 0,7 | Paraffine |
Paraffinöl[6] | 0,764 | Paraffine |
n-Pentan[21] | 1,6 | Paraffine |
Petroleum[6][8] | 0,9 bis 1 | Paraffine |
Schmieröl[6] | 0,6 bis 0,7 | Paraffine |
Chloroform[3] | 1,21 | halogeniertes Paraffin |
Tetrachlormethan[3] | 1,21 | halogeniertes Paraffin |
Methanol[3] | 1,49 | einwertige Alkohole |
Ethanol (vulgo Alkohol)[3] | 1,10 | einwertige Alkohole |
Glycerin[3] | 0,520 | dreiwertige Alkohole |
Essigsäure[3] | 1,08 | Paraffinsäuren |
Diethylether[21] | 1,62 | Ether |
Aceton[3] | 1,46 | Ketone |
Olivenöl[6] | 0,72 | Fettsäureester |
Benzol[3] | 1,14 | Aromatische Kohlenwasserstoffe |
Terpentinöl[6] | 1 | Pinene, Terpene |
Toluol[21] | 1,11 | Aromatische Kohlenwasserstoffe |
Gase
Gase unter Normaldruck und weit oberhalb des Siedepunktes verhalten sich näherungsweise wie ein ideales Gas. Dieses dehnt sich proportional zur absoluten Temperatur aus. Dieser einfache lineare Zusammenhang zwischen Volumen und Temperatur resultiert in einem sich stark mit der Temperatur ändernden Ausdehnungskoeffizienten , der umgekehrt proportional zur absoluten Temperatur ist[22]:
und für das Idealgas gilt:
Der Ausdehnungskoeffizient des Idealgases bei 0 °C (Bezugstemperatur) ist daher:
Der Ausdehnungskoeffizient für ideale Gase bei 20 °C ist 1 / (293,15 K) ≈ 3,411 · 10−3 K−1. Allgemein kann der Ausdehnungskoeffizient durch die thermischen Zustandsgleichung idealer Gase als γ(T) oder durch die thermischen Zustandsgleichung realer Gase als γ(T,p) berechnet werden.
Für das ideale Gas (bei niedrigem Druck) gilt nach der Idealgasgleichung für isobare (thermische) Ausdehnung:
Die Temperaturen müssen als absolute Temperaturen in [Kelvin] eingesetzt werden. Für Temperaturen, die sich um eine feste Temperaturdifferenz, beispielsweise um 1 K, unterscheiden, strebt das Volumenverhältnis für immer höhere Temperaturen gegen den Wert 1. Der Ausdehnungskoeffizient strebt für immer höhere Temperaturen daher gegen Null. Er sinkt also für ideale Gase mit steigender Temperatur ab.
Vergleich der isobaren (differentiellen) Ausdehnungskoeffizienten von Wasser und Wasserdampf
Fratscher und Picht[23] nennen für siedendes Wasser und den im Gleichgewicht stehenden Sattdampf (100 % Dampf, 0 % flüssiges Wasser) für Temperaturen von 0,01 °C bis 374,15 °C (kritische Temperatur von Wasser) die Ausdehnungskoeffizienten in 10 °C-Schritten. Der zugehörige Systemdruck ist der jeweilige Dampfdruck von Wasser. Einige der Werte werden hier beispielhaft wiedergegeben:
Temperatur in °C | Dampfdruck in MPa | in K−1 | (Sattdampf) in K−1 |
Hinweise |
---|---|---|---|---|
0,01 | 0,0006112 | −0,0000855 | 0,003669 | Dichteanomalie bis 4 °C |
10 | 0,0012271 | 0,0000821 | 0,003544 | |
20 | 0,0023368 | 0,0002066 | 0,003431 | |
30 | 0,0042417 | 0,0003056 | 0,003327 | |
40 | 0,0073749 | 0,0003890 | 0,003233 | |
50 | 0,012335 | 0,0004624 | 0,003150 | |
60 | 0,019919 | 0,0005288 | 0,003076 | |
70 | 0,031161 | 0,0005900 | 0,003012 | |
80 | 0,047359 | 0,0006473 | 0,002958 | |
90 | 0,070108 | 0,0007019 | 0,002915 | |
100 | 0,101325 | 0,0007547 | 0,002882 | |
150 | 0,47597 | 0,001024 | 0,002897 | |
200 | 1,5551 | 0,001372 | 0,003291 | |
250 | 3,9776 | 0,001955 | 0,004321 | |
300 | 8,5917 | 0,003293 | 0,007117 | |
350 | 16,537 | 0,01039 | 0,02175 | |
360 | 18,674 | 0,01928 | 0,03899 | |
370 | 21,053 | 0,09818 | 0,1709 | |
374,15 (krit. Temp.) | 22,12 (krit. Druck) | >0,1709 (Originalliteratur nennt „∞“, *) |
kritischer Punkt | |
Anmerkungen:
Kurz vor erreichen des kritischen Punktes nehmen die Ausdehnungskoeffizienten von Wasser und Wasserdampf stark zu. Am kritischen Punkt werden Flüssigkeit und Dampf eins/identisch. Es gibt daher dann nur noch einen Ausdehnungskoeffizienten. Im Vergleich zu 370 °C muss dessen Wert aber größer sein, da das Volumen nochmals überproportional zugenommen hat.
Konzentrationsabhängige Ausdehnungskoeffizienten wässriger Lösungen
Bei konstanter Temperatur zeigen wässrige Lösungen einen mit der Konzentration des gelösten Stoffes meist ansteigenden Ausdehnungskoeffizienten.
Bierwerth[22] nennt als Beispiele Natriumchloridlösung, Kaliumchloridlösung und Kalziumchloridlösungen verschiedener Massenkonzentrationen. So haben beispielsweise (Zitat) Kaliumchloridlösungen der Massengehalte 4/10/20 % Ausdehnungskoeffizienten von 0,00025/0,00031/0,00041 bei jeweils 20 °C. Aus den genannten Beispielen lässt sich schlussfolgern, dass bei diesen wässrigen Salzlösungen der Zahlenwert des Ausdehnungskoeffizienten um etwa 25 % (bei relativ niedrigen Konzentrationen) bis 50 % (bei höheren Konzentrationen) zunimmt jeweils bei einer Verdoppelung der Massenkonzentration der Lösung.
Berechnung des mittleren Raumausdehnungskoeffizienten aus Werten der Dichte oder spezifischen Volumina
Da die Änderung des Volumens von Feststoffen und Flüssigkeiten eine Änderung deren Dichte nach sich zieht, kann der mittlere statistische Volumenausdehnungskoeffizient auch aus dem Quotienten zweier Dichten für zwei Temperaturen berechnet werden[22]:
- mit .
Der mittlere Raumausdehnungskoeffizient zwischen den gewählten Temperaturen ergibt sich also zu:
- .
Alternativ können auch Werte der massenspezifischen Volumina oder der Molvolumen, herangezogen werden:
- .
Die spezifischen Volumina sind den Dichten entgegengesetzt proportional.
Der mittlere statistische Raumausdehnungskoeffizient hat Vorteile in der Anwendung gegenüber dem auf eine Temperatur bezogenen „üblichen“ Volumenausdehnungskoeffizienten „“. Der übliche Volumenausdehnungskoeffizient ist nur für eine Temperatur gültig. Dessen Wert steigt bei Flüssigkeiten mit steigender Temperatur meist an. Wegen der Dichteanomalie, u. a. von Wasser und flüssigem Ammoniak, haben diese Substanzen in engen Temperaturbereichen auch negative Ausdehnungskoeffizienten. Berechnet man also die Volumenänderung mit Hilfe des mittleren Volumenausdehnungskoeffizienten von Temperatur bis Temperatur , so erhält man einen korrekten Wert für das neue Volumen – oder die neue Dichte –, während die Berechnung mit dem Volumenausdehnungskoeffizienten zu einer festen Temperatur einen „größeren“ Fehler aufweisen würde. Es ist auch möglich den Volumenausdehnungskoeffizienten für eine bestimmte Temperatur sehr genau zu berechnen mittels dieser Methode. Dazu zieht man die Dichtewerte für 1 K weniger und ein Kelvin mehr heran. Als Temperaturdifferenz wird 2 K eingesetzt. Für Wasser bei 4 °C erhält man so aus den Dichtewerten für 3 °C und 5 °C einen Volumenausdehnungskoeffizienten des Wertes 0. Dies ist korrekt, da Wasser bei 4 °C sein Dichtemaximum hat, dessen Dichte von 0 °C bis 4 °C steigt und ab 4 °C wieder absinkt. Folglich ist der Volumenausdehnungskoeffizient für Wasser bei 4 °C Null.
Zahlenwerte von Flüssigkeiten bei Luftdruck
Substanz | / in °C | / in g/cm³ | in K | mittlere Temp. in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
Wasser | 0 / 1 | 0,999840 / 0,999899 | 1 | 0,5 | −0,000059006 | [7] |
3 / 5 | 0,999964 / 0,999964 | 2 | 4 | 0 | ||
0 / 20 | 0,999840 / 0,998203 | 20 | 10 | 0,0000820 | ||
17 / 19 | 0,998773 / 0,998403 | 2 | 18 | 0,0001853 | ||
19 / 21 | 0,998403 / 0,997991 | 2 | 20 | 0,0002064 | ||
24 / 26 | 0,997295 / 0,996782 | 2 | 25 | 0,0002573 | ||
20 / 100 | 0,998203 / 0,95835 | 80 | 60 | 0,0005198 | ||
90 / 100 | 0,96532 / 0,95835 | 10 | 95 | 0,0007273 | ||
Quecksilber | −20 / −18 | 13,6446 / 13,6396 | 2 | −19 | 0,0001833 | [7] |
−2 / 2 | 13,6000 / 13,5901 | 4 | 0 | 0,00018212 | ||
0 / 20 | 13,5951 / 13,5457 | 20 | 10 | 0,0001823 | ||
16 / 20 | 13,5556 / 13,5457 | 4 | 18 | 0,00018271 | ||
18 / 22 | 13,5507 / 13,5408 | 4 | 20 | 0,00018278 | ||
24 / 26 | 13,5359 / 13,5310 | 2 | 25 | 0,00018107 | ||
20 / 100 | 13,5457 / 13,3512 | 80 | 60 | 0,0001821 | ||
90 / 100 | 13,3753 / 13,3512 | 10 | 95 | 0,0001805 | ||
240 / 260 | 13,018 / 12,970 | 20 | 250 | 0,00018504 | ||
Propantriol (Glyzerin) | 20 / 60 | 1,260 / 1,239 | 40 | 40 | 0,0004237 | [23] |
80 / 100 | 1,224 / 1,207 | 20 | 90 | 0,0007042 | ||
140 / 160 | 1,167 / 1,143 | 20 | 150 | 0,001050 | ||
180 / 200 | 1,117 / 1,090 | 20 | 190 | 0,001239 | ||
220 / 240 | 1,059 / 1,025 | 20 | 230 | 0,001659 | ||
Silikonöl „Baysilone M10“ ® | −40 / 0 | 0,990 / 0,950 | 40 | −20 | 0,00105 | [23] |
0 / 40 | 0,950 / 0,920 | 40 | 20 | 0,000815 | ||
40 / 80 | 0,920 / 0,880 | 40 | 60 | 0,00114 | ||
80 / 120 | 0,880 / 0,850 | 40 | 100 | 0,000882 | ||
120 / 160 | 0,850 / 0,810 | 40 | 140 | 0,00123 | ||
160 / 200 | 0,810 / 0,770 | 40 | 180 | 0,00130 | ||
200 / 240 | 0,770 / 0,740 | 40 | 220 | 0,00101 | ||
Bei ca. 4 °C hat Wasser seine maximale Dichte von 0,999975 g/cm³ (Dichteanomalie) und der Volumenausdehnungskoeffizient ist hier Null.
Die berechneten Werte zeigen beispielsweise für eine Temperatursteigerung von 0 auf 20 °C eine Volumenzunahme um +0,164 % für Wasser und um +0,365 % für Quecksilber. Von 20 bis 100 °C steigen die Volumen um +4,16 % bei Wasser und um +1,46 % bei Quecksilber.
Wie man sieht, steigt der Volumenausdehnungskoeffizient von Flüssigkeiten mit steigender Temperatur fast immer nur an, es sei denn, die Substanz hat in einem engen Temperaturbereich eine Dichteanomalie, wie bei Wasser zwischen 0 und 4 °C vorliegend.
Zahlenwerte von siedenden Flüssigkeiten beim jeweiligen Dampfdruck (nicht isobar)
Bei jeder Temperatur hat eine Flüssigkeit einen anderen Dampfdruck, entsprechend ihrer Dampfdruckfunktion. Daher erfolgen hier temperaturbedingte Ausdehnung oder Kontraktion des Volumens nicht isobar.
Substanz | / in °C | / in g/cm³ | in K | in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
siedendes überhitztes Wasser |
95 / 100 | 0,96172 / 0,95813 | 5 | 97,5 | 0,00074938 | [23] |
90 / 110 | 0,96516 / 0,95066 | 20 | 100 | 0,00076263 | ||
120 / 130 | 0,94286 / 0,93458 | 10 | 125 | 0,00088596 | ||
140 / 160 | 0,92584 / 0,90728 | 20 | 150 | 0,0010228 | ||
190 / 200 | 0,87604 / 0,86468 | 10 | 195 | 0,0013138 | ||
190 / 210 | 0,87604 / 0,85281 | 20 | 200 | 0,0013620 | ||
200 / 210 | 0,86468 / 0,85281 | 10 | 205 | 0,0013919 | ||
240 / 260 | 0,81360 / 0,78394 | 20 | 250 | 0,0018915 | ||
290 / 300 | 0,73212 / 0,71220 | 10 | 295 | 0,0027970 | ||
290 / 310 | 0,73212 / 0,69061 | 20 | 300 | 0,0030053 | ||
300 / 310 | 0,71220 / 0,69061 | 10 | 305 | 0,0031262 | ||
310 / 320 | 0,69061 / 0,66689 | 10 | 315 | 0,0035568 | ||
320 / 330 | 0,66689 / 0,64045 | 10 | 325 | 0,0041283 | ||
330 /340 | 0,64045 / 0,61013 | 10 | 335 | 0,0049694 | ||
340 / 350 | 0,61013 / 0,57448 | 10 | 345 | 0,0062056 | ||
350 / 360 | 0,57448 / 0,52826 | 10 | 355 | 0,0087495 | ||
360 / 370 | 0,52826 / 0,44823 | 10 | 365 | 0,017855 | ||
370 / 374,15 (kritische Temp.) |
0,44823 / 0,3262 | 4,15 | 372,075 | 0,09014 | ||
Zahlenwerte von siedenden Flüssiggasen beim jeweiligen Dampfdruck (nicht isobar)
Bei jeder Temperatur hat eine Flüssigkeit/ein Flüssiggas einen anderen Dampfdruck, entsprechend ihrer Dampfdruckfunktion. Daher erfolgen hier temperaturbedingte Ausdehnung oder Kontraktion des Volumens nicht isobar.
Substanz | / in °C | / in g/cm³ | in K | mittlere Temperatur in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
flüssiges Kohlendioxid, siedend | −50 / −40 | 1,1526 / 1,1136 | 10 | −45 | 0,0035022 | [23] |
−30 / −20 | 1,0727 / 1,0293 | 10 | −25 | 0,0042165 | ||
0 / 2 | 0,9285 / 0,9168 | 2 | 1 | 0,006381 | ||
18 / 22 | 0,7979 / 0,7548 | 4 | 20 | 0,01428 | ||
28 / 30 | 0,6568 / 0,5929 | 2 | 29 | 0,05389 | ||
30/ 31,05 (kritische Temperatur) | 0,5929 / 0,4680 | 1,05 | 30,525 | 0,2542 ! | ||
flüssiges Propan, siedend | −50 / −40 | 0,5917 / 0,5858 | 10 | −25 | 0,001007 | [23] |
−30 / −20 | 0,5679 / 0,5559 | 10 | −45 | 0,002159 | ||
−5 / 5 | 0,5365 / 0,5233 | 10 | 0 | 0,002522 | ||
20 / 30 | 0,5020 / 0,4866 | 10 | 25 | 0,003165 | ||
40 / 50 | 0,4684 / 0,4500 | 10 | 45 | 0,004089 | ||
flüssiges Ethen (Ethylen), siedend | −40 / -30 | 0,4621 / 0,4403 | 10 | −35 | 0,004951 | [23] |
−30 / −20 | 0,4403 / 0,4153 | 10 | −25 | 0,006020 | ||
−20 / −10 | 0,4153 / 0,3851 | 10 | −15 | 0,007842 | ||
−10 / 0 | 0,3851 / 0,3471 | 10 | −5 | 0,01095 | ||
−5 / 5 | 0,3671 / 0,3186 | 10 | 0 | 0,01522 | ||
0 / 2 | 0,3471 / 0,3378 | 2 | 1 | 0,01377 | ||
0 / 4 | 0,3471 / 0,3258 | 4 | 2 | 0,01634 | ||
4 / 6 | 0,3258 / 0,3102 | 2 | 5 | 0,02515 | ||
7 / 8 | 0,2995 / 0,2858 | 1 | 7,5 | 0,04794 | ||
7 / 9 | 0,2995 / 0,2646 | 2 | 8 | 0,06595 | ||
8 / 9 | 0,2858 / 0,2646 | 1 | 8,5 | 0,08012 | ||
8 / 9,9 (kritische Temperatur) | 0,2858 / 0,2111 | 1,9 | 8,95 | 0,1862 | ||
9 / 9,5 | 0,2646 / 0,2483 | 0,5 | 9,25 | 0,1313 | ||
9 / 9,9 (kritische Temperatur) | 0,2646 / 0,2111 | 0,9 | 9,45 | 0,2816 | ||
9,5 / 9,9 (kritische Temperatur) | 0,2483 / 0,2111 | 0,4 | 9,7 | 0,4405 ! | ||
flüssiges Ammoniak, siedend | −70 / −68 | 0,72527 / 0,72036 | 2 | −69 | +0,003408 | [23] |
−68 / −66 | 0,72036 / 0,72067 | 2 | −67 | −0,000215 | ||
−66 / −64 | 0,72067 / 0,71839 | 2 | −65 | +0,001587 | ||
−64 / −62 | 0,71839 / 0,71608 | 2 | −63 | +0,001613 | ||
−50 / −48 | 0,70200 / 0,69964 | 2 | −49 | +0,001687 | ||
−30 / −28 | 0,67764 / 0,67517 | 2 | −29 | +0,001829 | ||
−28 / −26 | 0,67517 / 0,67263 | 2 | −27 | +0,001888 | ||
−26 / −24 | 0,67263 / 0,67463 | 2 | −25 | −0,001482 | ||
−24 / −22 | 0,67463 / 0,68587 | 2 | −23 | −0,008194 | ||
−22 / −20 | 0,68587 / 0,66503 | 2 | −21 | +0,015668 | ||
−2 / 0 | 0,64127 / 0,63857 | 2 | −1 | +0,002114 | ||
−2 / 2 | 0,64127 / 0,63585 | 4 | 0 | +0,002131 | ||
0 / 2 | 0,63857 / 0,63585 | 2 | 1 | +0,002139 | ||
18 / 20 | 0,61320 / 0,61028 | 2 | 19 | +0,002392 | ||
18 / 22 | 0,61320 / 0,60731 | 4 | 20 | +0,002425 | ||
20 / 22 | 0,61028 / 0,60731 | 2 | 21 | +0,002445 | ||
24 / 26 | 0,60438 / 0,60132 | 2 | 25 | +0,002544 | ||
48 / 50 | 0,56628 / 0,56306 | 2 | 49 | +0,002859 | ||
Hinweis: Dichtewerte und Ausdehnungskoeffizienten des flüssigen Ammoniaks weisen zwei Dichteanomalien auf.
Zahlenwerte von Metallschmelzen
Substanz | / in °C | / in g/cm³ | in K | mittlere Temperatur in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
Natrium-Kalium-Legierung (hier: 25%Na/75%K, Massenprozente) | 20 / 100 | 0,872 / 0,852 | 80 | 60 | 0,000293 | [23] |
100 / 200 | 0,852 / 0,828 | 100 | 150 | 0,000290 | ||
200 / 300 | 0,828 / 0,803 | 100 | 250 | 0,000311 | ||
300 / 500 | 0,803 / 0,753 | 200 | 400 | 0,000332 | ||
500 / 600 | 0,753 / 0,729 | 100 | 550 | 0,000329 | ||
600 / 700 | 0,729 / 0,704 | 100 | 650 | 0,000355 | ||
Lithium-Schmelze | 200 / 300 | 0,511 / 0,505 | 100 | 250 | −0,00701 | [23] |
300 / 400 | 0,505 / 0,495 | 100 | 350 | +0,000202 | ||
400 / 600 | 0,495 / 0,474 | 200 | 500 | +0,000222 | ||
600 / 700 | 0,474 / 0,465 | 100 | 650 | +0,000194 | ||
Zinn-Schmelze | 240 / 300 | 6,985 / 6,940 | 60 | 270 | 0,0001081 | [23] |
300 / 400 | 6,940 / 6,865 | 100 | 350 | 0,0001093 | ||
400 / 500 | 6,865 / 6,790 | 100 | 450 | 0,0001105 | ||
500 / 600 | 6,790 / 6,720 | 100 | 550 | 0,0001042 | ||
600 / 700 | 6,720 / 6,640 | 100 | 650 | 0,0001205 | ||
Blei-Schmelze | 400 / 500 | 10,582 / 10,476 | 100 | 450 | 0,00010118 | [23] |
500 / 600 | 10,476 / 10,360 | 100 | 550 | 0,00011197 | ||
600 / 700 | 10,360 / 10,242 | 100 | 650 | 0,00011521 | ||
700 / 800 | 10,242 / 10,125 | 100 | 750 | 0,00011556 | ||
Zahlenwerte von Gasen (isobar)
Substanz | / in °C | / in g/l | in K | mittlere Temperatur in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
trockene Luft, bei 1 bar | −20 / 0 | 1,3765 / 1,2754 | 20 | −10 | 0,0039635 | [23] |
0 / 20 | 1,2754 / 1,1881 | 20 | 10 | 0,0036739 | ||
20 / 40 | 1,1881 / 1,1120 | 20 | 30 | 0,0034218 | ||
40 / 60 | 1,1120 / 1,0452 | 20 | 50 | 0,0031956 | ||
60 / 80 | 1,0452 / 0,9859 | 20 | 70 | 0,0030074 | ||
80 / 100 | 0,9859 / 0,9329 | 20 | 90 | 0,0028406 | ||
140 / 160 | 0,8425 / 0,8036 | 20 | 150 | 0,0024204 | ||
180 / 200 | 0,7681 / 0,7356 | 20 | 190 | 0,0022091 | ||
200 / 300 | 0,7356 / 0,6072 | 100 | 250 | 0,0021146 | ||
300 / 400 | 0,6072 / 0,5170 | 100 | 350 | 0,0017447 | ||
400 / 500 | 0,5170 / 0,4502 | 100 | 450 | 0,0014838 | ||
500 / 600 | 0,4502 / 0,3986 | 100 | 550 | 0,0012945 | ||
600 / 700 | 0,3986 / 0,3577 | 100 | 650 | 0,0011434 | ||
700 / 800 | 0,3577 / 0,3243 | 100 | 750 | 0,0010300 | ||
800 / 900 | 0,3243 / 0,2967 | 100 | 850 | 0,0009302 | ||
900 / 1000 | 0,2967 / 0,2734 | 100 | 950 | 0,0008522 | ||
trockene Luft, bei 10 bar. | −25 / 0 | 14,16 / 12,82 | 25 | −12,5 | 0,004181 | [23] |
0 / 25 | 12,82 / 11,71 | 25 | 12,5 | 0,003792 | ||
25 / 50 | 11,71 / 10,79 | 25 | 37,5 | 0,003411 | ||
50 / 100 | 10,79 / 9,321 | 50 | 75 | 0,003152 | ||
100 / 200 | 9,321 / 7,336 | 100 | 150 | 0,002706 | ||
200 / 300 | 7,336 / 6,053 | 100 | 250 | 0,002120 | ||
300 / 400 | 6,053 / 5,153 | 100 | 350 | 0,001747 | ||
400 / 500 | 5,153 / 4,487 | 100 | 450 | 0,001484 | ||
trockene Luft, bei 100 bar. | −25 / 0 | 149,5 / 131,4 | 25 | −12,5 | 0,005510 | [23] |
0 / 25 | 131,4 / 117,8 | 25 | 12,5 | 0,004618 | ||
25 / 50 | 117,8 / 107,1 | 25 | 37,5 | 0,003996 | ||
50 / 100 | 107,1 / 91,13 | 50 | 75 | 0,003505 | ||
100 / 200 | 91,13/ 70,92 | 100 | 150 | 0,002850 | ||
200 / 300 | 70,92 / 58,37 | 100 | 250 | 0,002150 | ||
300 / 400 | 58,37 / 49,71 | 100 | 350 | 0,001742 | ||
400 / 500 | 49,71 / 43,55 | 100 | 450 | 0,001414 | ||
gesättigt feuchte Luft, bei 100 kPa | 0 / 2 | 1,2731 / 1,2634 | 2 | 1 | 0,003839 | [23] |
8 / 12 | 1,2347 / 1,2159 | 4 | 10 | 0,0038654 | ||
16 / 20 | 1,1971 / 1,1785 | 4 | 18 | 0,003946 | ||
18 / 22 | 1,1878 / 1,1691 | 4 | 20 | 0,003999 | ||
24 / 26 | 1,1597 / 1,1503 | 2 | 25 | 0,004086 | ||
28 / 32 | 1,1408 / 1,1216 | 4 | 30 | 0,004280 | ||
38 / 42 | 1,0921 / 1,0717 | 4 | 40 | 0,004759 | ||
48 / 50 | 1,0395 / 1,0282 | 2 | 49 | 0,005495 | ||
55 / 65 | 0,9989 / 0,9332 | 10 | 60 | 0,007040 | ||
65 / 75 | 0,9332 / 0,8552 | 10 | 70 | 0,009121 | ||
75 /85 | 0,8552 / 0,7605 | 10 | 80 | 0,01245 | ||
85 / 95 | 0,7605 / 0,6442 | 10 | 90 | 0,01805 | ||
Hinweis: Der Sättigungsgrad 100 % der feuchten Luft bleibt bei Erwärmung nur konstant erhalten, wenn die Luft beispielsweise in einer Gasbürette über der Sperrflüssigkeit Wasser eingeschlossen ist, während die Temperatur erhöht wird.
Zahlenwerte von überhitztem Wasserdampf (isobar)
Substanz | / in °C | / in g/l | in K | mittlere Temperatur in °C | in K−1 | Quellen |
---|---|---|---|---|---|---|
überhitzter Wasserdampf bei 0,6 bar | 100 / 200 | 0,3514 / 0,2756 | 100 | 150 | 0,002750 | [20] |
200 / 300 | 0,2756 / 0,2272 | 100 | 250 | 0,002130 | ||
300 / 400 | 0,2272 / 0,1933 | 100 | 350 | 0,0011754 | ||
400 / 500 | 0,1933 / 0,1682 | 100 | 450 | 0,001492 | ||
überhitzter Wasserdampf bei 1 bar | 100 / 200 | 0,5899 / 0,4604 | 100 | 150 | 0,002813 | [20] |
200 / 300 | 0,4604 / 0,3791 | 100 | 250 | 0,002145 | ||
300 / 400 | 0,3791 / 0,3224 | 100 | 350 | 0,001759 | ||
400 / 500 | 0,3224 / 0,2805 | 100 | 450 | 0,001494 | ||
überhitzter Wasserdampf bei 6 bar | 200 / 300 | 2,839 / 2,304 | 100 | 250 | 0,002322 | [20] |
300 / 400 | 2,304 / 1,947 | 100 | 350 | 0,001834 | ||
400 / 500 | 1,947 / 1,690 | 100 | 450 | 0,001521 | ||
überhitzter Wasserdampf bei 10 bar | 200 / 300 | 4,850 / 3,879 | 100 | 250 | 0,002503 | [20] |
300 / 400 | 3,879 / 3,264 | 100 | 350 | 0,001884 | ||
400 / 500 | 3,264 / 2,826 | 100 | 450 | 0,001550 | ||
Zusammenfassung
- Bei Feststoffen und Flüssigkeiten steigt der Ausdehnungskoeffizient (positiver Wert) mit steigender Temperatur fast ausnahmslos an. Einige Stoffe, Flüssigkeiten und Feststoffe, weisen Dichteanomalien in engen Temperaturbereichen auf und haben dann in diesen Bereichen auch negative Ausdehnungskoeffizienten.
- Gase haben positive Ausdehnungskoeffizienten, die aber mit steigender Temperatur in ihrem Wert abnehmen.
- Flüssigkeiten zeigen kurz vor Erreichen der kritischen Temperatur[24] des Stoffs eine starke exponentielle Zunahme der Ausdehnungskoeffizienten. Die berechneten Beispiele von flüssigem Ethen und Kohlendioxid zeigen dies deutlich. Laut Fratscher/Picht[23] soll auch der Ausdehnungskoeffizient -des mit der Flüssigkeit im Gleichgewicht stehenden Dampfes- kurz vor Erreichen der kritischen Temperatur der Substanz eine starke exponentielle Zunahme zeigen. Fratscher nennt für den kritischen Punkt für Wasser als Wert der Ausdehnungskoeffizienten „unendlich“, doch dies kann nicht sein. Es müssen endliche Werte bestimmbar sein, da ansonsten eine unendlich hohe Energie (isobare Verschiebearbeit) zur Ausdehnung des Volumens aufgewendet werden müsste.
Der überkritische Zustand ist weder Flüssigkeit noch Dampf. Daher müssen die Ausdehnungskoeffizienten von Flüssigkeit und Dampf sich vor Erreichen des kritischen Punktes einander annähern um schließlich am kritischen Punkt identisch zu werden.
Plötzliche Änderungen der Dichte/des Ausdehnungskoeffizienten von Feststoffen und Flüssigkeiten verweisen auf eine Änderung der Molekül- oder Kristallstruktur bei den jeweiligen Bedingungen Druck und Temperatur.
Einfluss der Ausdehnungskoeffizienten auf den Füllgrad eines Behälters bei Temperaturänderungen
Der Füllgrad eines Behälters (in der Verfahrenstechnik) ist definiert als:
- .
Sind die Zahlenwerte der Volumenausdehnungskoeffizienten der im Behälter befindlichen Flüssigkeit und der berechenbare Volumenausdehnungskoeffizient des Behältermaterials (Wandmaterial) nicht gleich groß, so führt jede Änderung der Temperatur des Behälters und seines Inhaltes (Flüssigkeit) zu einer Änderung des Behälterfüllgrades, da sich Flüssigkeit und Behältermaterial unterschiedlich stark ausdehnen oder zusammenziehen, wenn die Temperatur steigt oder sinkt. Bierwerth nennt folgende Formel für die Änderung des prozentualen Füllgades :[25]
- .
Flüssigkeitsvolumen , Behältervolumen . Die mit Indice 0 gekennzeichneten Volumina sind die Werte vor der Temperaturänderung (Anfangswert). Längenausdehnungskoeffizient des Behältermaterials. Volumenausdehnungskoeffizient der im Behälter befindlichen Flüssigkeit. Die verwendeten Ausdehnungskoeffizienten sind die mittleren Ausdehnungskoeffizienten im jeweiligen Temperaturbereich.
Siehe auch
Literatur
- Gerhard Ondracek: Werkstoffkunde. Leitfaden für Studium und Praxis. 2., überarbeitete Aufl. Expert-Verlag, Sindelfingen 1986, ISBN 3-88508-966-1.
- Walther Bierwerth: Tabellenbuch Chemietechnik. Europa-Lehrmittel KG, 2005, ISBN 3-8085-7085-7, Volumenausdehnungskoeffizienten von Flüssigkeiten und Feststoffen, S. 76; Methode der Bestimmung des differentiellen Ausdehnungskoeffizienten zu einer Temperatur; Ausdehnungskoeffizienten vieler Behälterwerkstoffe der chemischen Industrie: Stähle, Legierungen, Leichtmetalle, Gläsern, Keramiken und Kunststoffen, S. 248–256.
- U. Hübschmann, E. Links, E. Hitzel: Tabellen zur Chemie und zur Analytik in Ausbildung und Beruf. Verlag Handwerk und Technik, 1998, ISBN 978-3-582-01234-0.
- Fritz Dietzel: Technische Wärmelehre. Vogel Verlag Würzburg, 1990, ISBN 3-8023-0089-0, Anhang Tafel 2 mittlere Ausdehnungskoeffizienten von Aluminium, Grauguß, Glas, Messing und Stahl (0,5%C) für zwei verschiedene Temperaturbereiche: 0–100 °C und 0–200 °C, S. 159.
- Autorenkollektiv (Rolf Kaltofen et al.): Tabellenbuch Chemie. (dicke Version) 5. Aufl. VEB Verlag für Grundstoffindustrie Leipzig, Leipzig 1975, Ausdehnungskoeffizienten von Metallen, Elementen und Legierungen, von Nichtmetallen, organischen Flüssigkeiten, verschiedenen Gläsern und Keramiken, S. 389–390.
- Wolfgang Fratscher, Hans-Peter Picht: Stoffdaten und Kennwerte der Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie, Leipzig 1979 & Stuttgart 1993, ISBN 3-342-00633-1, isobare Ausdehnungskoeffizienten von Wasser und Wasserdampf, S. 170–171; Ausdehnungskoeffizienten von Feststoffen (Werkstoffen), anorganischer und organischer Flüssigkeiten, S. 31.
Einzelnachweise
- The coefficients of thermal expansion of wood and wood products (PDF; 5,1 MB) Abgerufen am 10. Mai 2012.
- Werner Martienssen, Hans Warlimont (Hrsg.): Springer Handbook of Condensed Matter and Material Data. Springer, Berlin u. a. 2005, ISBN 3-540-44376-2.
- William M. Haynes (Hrsg.): CRC Handbook of Chemistry and Physics. A ready-reference Book of chemical and physical Data. 92. Auflage. CRC Press, Boca Raton FL u. a. 2011, ISBN 978-1-4398-5511-9.
- Autorenkollektiv (u. a.: Rolf Kaltofen): Tabellenbuch Chemie (dicke Version). 5. Auflage, VEB Verlag für Grundstoffindustrie, Leipzig, 1975, Ausdehnungskoeffizienten von Metallen, Elementen und Legierungen, von Nichtmetallen, organischen Flüssigkeiten, verschiedenen Gläsern und Keramiken, S. 389–390.
- Walther Bierwerth: Tabellenbuch Chemietechnik. Europa-Lehrmittel KG, 2005, ISBN 3-8085-7085-7, Tab. Ausdehnungskoeffizienten vieler Behälterwerkstoffe der chemischen Industrie: Stähle, Legierungen, Leichtmetalle, Gläsern, Keramiken und Kunststoffen. S. 248–256.
- Wolfgang Fratscher, Hans-Peter Picht: Stoffdaten und Kennwerte der Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie, Leipzig 1979 & Stuttgart 1993, ISBN 3-342-00633-1, Tab.2.3 Ausdehnungskoeffizienten von Feststoffen (Werkstoffen), anorganischer und organischer Flüssigkeiten, S. 31.
- U. Hübschmann, E. Links, E. Hitzel: Tabellen zur Chemie und zur Analytik in Ausbildung und Beruf. Verlag Handwerk und Technik, 1998, ISBN 978-3-582-01234-0 (S. 35–36: Ausdehnungskoeffizienten von Metalllegierungen (Werkstoffen), Gläsern und anorganischer Chemikalien).
- Paetec GmbH: Formeln und Tabellen für die Sekundarstufen I u. II. Berlin 1996, Ausdehnungskoeffizienten von Feststoffen und Flüssigkeiten.
- Wolfgang Fratscher, Hans-Peter Picht: Stoffdaten und Kennwerte der Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie, Leipzig 1979 & Stuttgart 1993, ISBN 3-342-00633-1, isobare Ausdehnungskoeffizienten von Wasser und Wasserdampf, S. 170–171.
- Wolfgang Fratscher, Hans-Peter Picht: Stoffdaten und Kennwerte der Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie, Leipzig 1979 & Stuttgart 1993, ISBN 3-342-00633-1, Tab. 2.3 Ausdehnungskoeffizienten von Feststoffen (Werkstoffen), anorganischer und organischer Flüssigkeiten, S. 31.
- Walther Bierwerth: Tabellenbuch Chemietechnik, Europa-Lehrmittel KG, 2005, ISBN 3-8085-7085-7, Volumenausdehnungskoeffizienten von Flüssigkeiten und Feststoffen, S. 76; Methode der Bestimmung des differentiellen Ausdehnungskoeffizienten zu einer Temperatur; Ausdehnungskoeffizienten vieler Behälterwerkstoffe der chemischen Industrie: Stähle, Legierungen, Leichtmetalle, Gläsern, Keramiken und Kunststoffen S. 248–256.
- Wolfgang Kaiser: Kunststoffchemie für Ingenieure: Von der Synthese bis zur Anwendung. 2. Auflage. Carl Hanser, 2007, ISBN 978-3-446-41325-2, S. 228.
- Technical Glasses Data Sheet (PDF) schott.com.
- Produktinformationsseite des Herstellers Heraeus-Quarzglas. auf heraeus-quarzglas.de.
- Keramverband Thermische Eigenschaften. Abgerufen am 29. Mai 2018.
- ZERODUR® Glaskeramik mit extrem niedriger thermischer Ausdehnung. Schott AG, abgerufen am 3. Februar 2019 (Der angegebene Wert gilt für Zerodur der Dehnungsklasse 0 EXTREME.).
- Ausdehnungskoeffizient von Eis für −5 °C bis 0 °C: in U. Hübschmann, E. Links, E. Hitzel: Tabellen zur Chemie. ISBN 978-3-582-01234-0. wird der Volumenausdehnungskoeffizient mit 0,000213 benannt, der umgerechnet einen Längenausdehnungskoeffizienten von 0,000071 ergibt.
- Paetec GmbH, Formeln und Tabellen für die Sekundarstufen I u. II, Berlin 1996, Ausdehnungskoeffizient von Eis bei 0 °C, dessen Längenausdehnungskoeffizient wird mit 0,000051 genannt
- J. A. Kosinski, J. G. Gualtieri, A. Ballato: Thermal expansion of alpha quartz. In: Proceedings of the 45th Annual Symposium on Frequency Control 1991. IEEE, Los Angeles 1991, ISBN 0-87942-658-6, S. 22, doi:10.1109/freq.1991.145883 (amerikanisches Englisch).
- Fritz Dietzel: Technische Wärmelehre. Vogel Verlag, Würzburg 1990, ISBN 3-8023-0089-0, S. 159 ff.
- Physikalisches Praktikum, W01 – Thermische Ausdehnung b-tu.de, abgerufen 12. Jänner 2019.
- Walther Bierwerth: Tabellenbuch Chemietechnik. Europa-Lehrmittel KG, 2005, ISBN 3-8085-7085-7, Längen-und Volumenänderung, S. 61 ff.
- Fratzscher/Picht: Stoffdaten und Kennwerte der Verfahrenstechnik, Verlag für Grundstoffindustrie Leipzig, DDR 1979/BRD 1993, S. 99ff.
- Anm. Bei Erreichen der kritischen Temperatur von niedrigeren Temperaturen her kommend.
- Walther Bierwerth: Tabellenbuch Chemietechnik, Europa-Lehrmittel KG, 2005, ISBN 3-8085-7085-7, Längen- und Volumenänderung, Änderung des Behälterfüllgrades in %, S. 75.