Taylorreihe

Die Taylorreihe w​ird in d​er Analysis verwendet, u​m eine glatte Funktion i​n der Umgebung e​iner Stelle d​urch eine Potenzreihe darzustellen, welche d​er Grenzwert d​er Taylor-Polynome ist. Diese Reihenentwicklung w​ird Taylor-Entwicklung genannt. Reihe u​nd Entwicklung s​ind nach d​em britischen Mathematiker Brook Taylor benannt.

Approximation von ln(x) durch Taylorpolynome der Grade 1, 2, 3 bzw. 10 um die Entwicklungsstelle 1. Die Polynome konvergieren nur im Intervall (0, 2]. Der Konvergenzradius ist also 1.
Animation zur Approximation ln(1+x) an der Stelle x=0

Definition

Sei ein offenes Intervall, eine glatte Funktion und ein Element von . Dann heißt die unendliche Reihe

die Taylorreihe von mit Entwicklungsstelle . Hierbei bezeichnet die Fakultät von und die -te Ableitung von , wobei man setzt.

Die Reihe ist hier zunächst nur „formal“ zu verstehen. Das heißt, dass die Konvergenz der Reihe nicht vorausgesetzt ist. In der Tat gibt es Taylorreihen, die nicht überall konvergieren (für siehe obige Abbildung). Auch gibt es konvergente Taylorreihen, die nicht gegen die Funktion konvergieren, aus der die Taylorreihe gebildet wird (zum Beispiel entwickelt an der Stelle ).

Im Spezialfall wird die Taylorreihe auch Maclaurin-Reihe genannt.

Die Summe d​er ersten beiden Terme d​er Taylorreihe

nennt man auch Linearisierung von an der Stelle . Allgemeiner nennt man die Partialsumme

die für festes ein Polynom in der Variablen darstellt, das -te Taylorpolynom.

Die Taylorformel mit Restglied macht Aussagen darüber, wie dieses Polynom von der Funktion abweicht. Aufgrund der Einfachheit der Polynomdarstellung sowie der guten Anwendbarkeit der Restgliedformeln sind Taylorpolynome ein häufig angewandtes Hilfsmittel der Analysis, der Numerik, der Physik und der Ingenieurwissenschaften.

Eigenschaften

Die Taylorreihe zur Funktion ist eine Potenzreihe mit den Ableitungen

und s​omit folgt d​urch vollständige Induktion

Übereinstimmung an der Entwicklungsstelle

Wegen

stimmen an der Entwicklungsstelle die Taylorreihe und ihre Ableitungen mit der Funktion und deren Ableitungen überein:

Gleichheit mit der Funktion

Im Fall einer analytischen Funktion stimmt die Taylorreihe mit dieser Potenzreihe überein, denn es gilt

und somit .

Wichtige Taylorreihen

Exponentialfunktionen und Logarithmen

Animation zur Taylorreihenentwicklung der Exponentialfunktion an der Stelle x=0

Die natürliche Exponentialfunktion wird auf ganz durch ihre Taylorreihe mit Entwicklungsstelle 0 dargestellt:

Beim natürlichen Logarithmus hat die Taylorreihe mit Entwicklungsstelle 1 den Konvergenzradius 1, d. h., für wird die Logarithmusfunktion durch ihre Taylorreihe dargestellt (vgl. Abb. oben):

Schneller konvergiert d​ie Reihe

und d​aher ist s​ie geeigneter für praktische Anwendungen.

Wählt man für ein , so ist und .

Trigonometrische Funktionen

Approximation von sin(x) durch Taylorpolynome T vom Grad 1, 3, 5 und 7
Animation: Die Kosinusfunktion um die Entwicklungsstelle 0 entwickelt, in sukzessiver Näherung

Für die Entwicklungsstelle (Maclaurin-Reihen) gilt:

Hierbei ist die -te Bernoulli-Zahl und die -te Eulersche Zahl.

Produkt von Taylorreihen

Die Taylorreihe eines Produkts zweier reeller Funktionen und kann berechnet werden, wenn die Ableitungen dieser Funktionen an der identischen Entwicklungsstelle bekannt sind:

Mit Hilfe d​er Produktregel ergibt s​ich dann

Sind d​ie Taylorreihen d​er beiden Funktionen explizit gegeben

so ist

mit

Dies entspricht d​er Cauchy-Produktformel d​er beiden Potenzreihen.

Beispiel

Seien , und . Dann ist

und w​ir erhalten

in beiden Fällen also

und somit

Diese Taylorentwicklung wäre allerdings auch direkt über die Berechnung der Ableitungen von möglich:

Taylorreihen nichtanalytischer Funktionen

Dass die Taylorreihe an jeder Entwicklungsstelle einen positiven Konvergenzradius hat und in ihrem Konvergenzbereich mit übereinstimmt, gilt nicht für jede beliebig oft differenzierbare Funktion. Aber auch in den folgenden Fällen nichtanalytischer Funktionen wird die zugehörige Potenzreihe als Taylorreihe bezeichnet.

Konvergenzradius 0

Die Funktion

ist auf ganz beliebig oft differenzierbar, aber ihre Taylorreihe in ist

und somit nur für konvergent (nämlich gegen bzw. gleich 1).[1]

Eine Funktion, die in einer Entwicklungsstelle nicht in eine Taylorreihe entwickelt werden kann

Die Taylorreihe einer Funktion konvergiert nicht immer gegen die Funktion. Im folgenden Beispiel stimmt die Taylorreihe auf keiner Umgebung um die Entwicklungsstelle mit der Ausgangsfunktion überein:

Als reelle Funktion ist beliebig oft stetig differenzierbar, wobei die Ableitungen in jedem Punkt (insbesondere für ) ausnahmslos 0 sind. Die Taylorreihe um den Nullpunkt ist also die Nullfunktion und stimmt in keiner Umgebung der 0 mit überein. Daher ist nicht analytisch. Die Taylorreihe um eine Entwicklungsstelle konvergiert zwischen und gegen . Auch mit einer Laurentreihe lässt sich diese Funktion nicht approximieren, weil die Laurentreihe, die die Funktion für korrekt wiedergibt, für nicht konstant 0 ergibt.

Mehrdimensionale Taylorreihe

Sei nun im Folgenden eine beliebig oft stetig differenzierbare Funktion mit Entwicklungsstelle .

Dann kann man zur Funktionsauswertung eine mit und parametrisierte Familie von Funktionen einführen, die man so definiert:

ist, wie man durch Einsetzen von feststellt, dann gleich .

Berechnet man nun von die Taylorentwicklung am Entwicklungspunkt und wertet sie bei aus, so erhält man die mehrdimensionale Taylorentwicklung von :

Mit der mehrdimensionalen Kettenregel und den Multiindex-Notationen für

erhält m​an ferner:

Mit der Schreibweise erhält man für die mehrdimensionale Taylorreihe bzgl. des Entwicklungspunktes

in Übereinstimmung z​um eindimensionalen Fall, f​alls man d​ie Multiindex-Notation verwendet.

Ausgeschrieben s​ieht die mehrdimensionale Taylorreihe w​ie folgt aus:

Beispiel

Zum Beispiel gilt nach dem Satz von Schwarz für die Taylorreihe einer Funktion , die von abhängt, an der Entwicklungsstelle :

Operatorform

Die Taylorreihe lässt sich auch in der Form darstellen, wobei mit der gewöhnliche Ableitungsoperator gemeint ist. Der Operator mit wird als Translationsoperator bezeichnet. Beschränkt man sich auf Funktionen, die global durch ihre Taylorreihe darstellbar sind, so gilt . In diesem Fall ist also

Für Funktionen von mehreren Variablen lässt sich durch die Richtungsableitung austauschen. Es ergibt sich

Man gelangt von links nach rechts, indem man zunächst die Exponentialreihe einsetzt, dann den Gradienten in kartesischen Koordinaten sowie das Standardskalarprodukt und schließlich das Multinomialtheorem verwendet.

Für die Taylorreihe lässt sich auch ein diskretes Analogon finden. Man definiert dazu den Differenzenoperator durch . Offensichtlich gilt nun , wobei mit der Identitätsoperator gemeint ist. Potenziert man nun auf beiden Seiten mit und verwendet die binomische Reihe, so ergibt sich

Man gelangt z​ur Formel

wobei mit die absteigende Faktorielle gemeint ist. Diese Formel ist als newtonsche Formel zur Polynominterpolation bei äquidistanten Stützstellen bekannt. Sie stimmt für alle Polynomfunktionen, muss aber für andere Funktionen nicht unbedingt korrekt sein.

Siehe auch

Einzelnachweise

  1. Taylor-Reihe mit Konvergenzradius Null (Wikibooks).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.