Bernoulli-Verteilung

Zufallsgrößen mit einer Bernoulli-Verteilung (auch als Null-Eins-Verteilung, Alternativ-Verteilung[1] oder Boole-Verteilung[2] bezeichnet) benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen es nur zwei mögliche Versuchsausgänge gibt. Einer der Versuchsausgänge wird meistens mit Erfolg bezeichnet und der komplementäre Versuchsausgang mit Misserfolg. Die zugehörige Wahrscheinlichkeit für einen Erfolg nennt man Erfolgswahrscheinlichkeit und die Wahrscheinlichkeit eines Misserfolgs. Beispiele:

  • Werfen einer Münze: Kopf (Erfolg), , und Zahl (Misserfolg), .
  • Werfen eines Würfels, wobei nur eine „6“ als Erfolg gewertet wird: , .
  • Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein , tritt nicht ein .
Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung für (blau), (grün) und (rot)

Die Bezeichnung Bernoulli-Versuch (Bernoullian trials n​ach Jakob I Bernoulli) w​urde erstmals 1937 i​n dem Buch Introduction t​o Mathematical Probability v​on James Victor Uspensky verwendet.[3]

Definition

Eine diskrete Zufallsgröße mit Werten in der Menge unterliegt der Null-Eins-Verteilung bzw. Bernoulli-Verteilung mit dem Parameter , wenn sie der folgenden Wahrscheinlichkeitsfunktion folgt

.

Die Verteilungsfunktion i​st dann

.

Man schreibt dann oder .

Eine Reihe v​on unabhängigen identischen Versuchen, b​ei der j​eder Einzelversuch d​er Bernoulli-Verteilung genügt, w​ird Bernoulli-Prozess o​der bernoullisches Versuchsschema genannt.

Eigenschaften

Erwartungswert

Die Bernoulli-Verteilung mit Parameter hat den Erwartungswert:

Dies hat den Grund, dass für eine Bernoulli-verteilte Zufallsvariable mit und gilt:

Varianz und weitere Streumaße

Die Bernoulli-Verteilung besitzt d​ie Varianz

denn es ist und damit

.

Damit i​st die Standardabweichung

und d​er Variationskoeffizient

.

Symmetrie

Für den Parameter ist die Bernoulli-Verteilung symmetrisch um den Punkt .

Schiefe

Die Schiefe d​er Bernoulli-Verteilung ist

.

Dies kann folgendermaßen gezeigt werden. Eine standardisierte Zufallsvariable mit Bernoulli-verteilt nimmt den Wert mit Wahrscheinlichkeit an und den Wert mit Wahrscheinlichkeit . Damit erhalten wir für die Schiefe

Wölbung und Exzess

Der Exzess d​er Bernoulli-Verteilung ist

und d​amit ist d​ie Wölbung

.

Momente

Alle k-ten Momente sind gleich und es gilt

.

Es i​st nämlich

.

Entropie

Die Entropie d​er Bernoulli-Verteilung ist

gemessen i​n Bit.

Modus

Der Modus d​er Bernoulli-Verteilung ist

.

Median

Der Median d​er Bernoulli-Verteilung ist

falls gilt, ist jedes ein Median.

Kumulanten

Die kumulantenerzeugende Funktion ist

.

Damit sind die ersten Kumulanten und es gilt die Rekursionsgleichung

Wahrscheinlichkeitserzeugende Funktion

Die wahrscheinlichkeitserzeugende Funktion ist

.

Charakteristische Funktion

Die charakteristische Funktion ist

.

Momenterzeugende Funktion

Die momenterzeugende Funktion ist

.

Beziehung zu anderen Verteilungen

Beziehung zur Binomialverteilung

Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung für . Mit anderen Worten, die Summe von unabhängigen Bernoulli-verteilten Zufallsgrößen mit identischem Parameter genügt der Binomialverteilung, demnach ist die Bernoulli-Verteilung nicht reproduktiv. Die Binomialverteilung ist die -fache Faltung der Bernoulli-Verteilung bei gleichem Parameter bzw. mit gleicher Wahrscheinlichkeit .

Beziehung zur verallgemeinerten Binomialverteilung

Die Summe von voneinander unabhängigen Bernoulli-verteilten Zufallsvariablen, die alle einen unterschiedlichen Parameter besitzen, ist verallgemeinert binomialverteilt.

Beziehung zur Poisson-Verteilung

Die Summe von Bernoulli-verteilten Zufallsgrößen genügt für , und einer Poisson-Verteilung mit dem Parameter . Dies folgt direkt daraus, dass die Summe binomialverteilt ist und für die Binomialverteilung die Poisson-Approximation gilt.

Beziehung zur Zweipunktverteilung

Die Bernoulli-Verteilung ist ein Spezialfall der Zweipunktverteilung mit . Umgekehrt ist die Zweipunktverteilung eine Verallgemeinerung der Bernoulli-Verteilung auf beliebige zweielementige Punktmengen.

Beziehung zur Rademacher-Verteilung

Sowohl die Bernoulli-Verteilung mit als auch die Rademacher-Verteilung modellieren einen fairen Münzwurf (oder eine faire, zufällige Ja/Nein-Entscheidung). Der Unterschied besteht lediglich darin, dass Kopf (Erfolg) und Zahl (Misserfolg) unterschiedlich codiert werden.

Beziehung zur geometrischen Verteilung

Bei Hintereinanderausführung v​on Bernoulli-verteilten Experimenten i​st die Wartezeit a​uf den ersten Erfolg (oder letzten Misserfolg, j​e nach Definition) geometrisch verteilt.

Beziehung zur diskreten Gleichverteilung

Die Bernoulli-Verteilung mit ist eine diskrete Gleichverteilung auf .

Urnenmodell

Die Bernoulli-Verteilung lässt sich auch aus dem Urnenmodell erzeugen, wenn ist. Dann entspricht dies dem einmaligen Ziehen aus einer Urne mit Kugeln, von denen genau rot sind und alle anderen eine andere Farbe besitzen. Die Wahrscheinlichkeit, eine rote Kugel zu ziehen, ist dann Bernoulli-verteilt.

Simulation

Bei der Simulation macht man sich zunutze, dass wenn eine stetig gleichverteilte Zufallsvariable auf ist, die Zufallsvariable Bernoulli-verteilt ist mit Parameter . Da fast jeder Computer Standardzufallszahlen erzeugen kann, ist die Simulation wie folgend:

  1. Erzeuge eine Standardzufallszahl
  2. Ist , gib 0 aus, ansonsten gib 1 aus.

Dies entspricht g​enau der Inversionsmethode. Die einfache Simulierbarkeit v​on Bernoulli-verteilten Zufallsvariablen k​ann auch z​ur Simulation v​on binomialverteilten o​der verallgemeinert Binomialverteilten Zufallsvariablen genutzt werden.

Literatur

  • Hans-Otto Georgii: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage, de Gruyter, 2009, ISBN 978-3-11-021526-7.

Einzelnachweise

  1. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 63, doi:10.1007/978-3-642-45387-8.
  2. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 254, doi:10.1007/978-3-642-21026-6.
  3. James Victor Uspensky: Introduction to Mathematical Probability, McGraw-Hill, New York 1937, Seite 45
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.