Bose-Einstein-Statistik

Die Bose-Einstein-Statistik oder auch Bose-Einstein-Verteilung, benannt nach Satyendranath Bose (1894–1974) und Albert Einstein (1879–1955), ist eine Wahrscheinlichkeitsverteilung in der Quantenstatistik (dort auch die Herleitung). Sie beschreibt die mittlere Besetzungszahl eines Quantenzustands der Energie  im thermodynamischen Gleichgewicht bei der absoluten Temperatur für identische Bosonen als besetzende Teilchen.

Besetzungszahl als Funktion der Energie
für Bosonen (Bose-Einstein-Statistik, obere Kurve)
bzw. Fermionen (Fermi-Dirac-Statistik, untere Kurve),
jeweils im Spezialfall der Wechselwirkungsfreiheit und bei konstanter Temperatur .
Das chemische Potential ist ein Parameter, der von Temperatur und Dichte abhängt;
im Bose-Fall ist es immer kleiner als die Energie und würde im Grenzfall der Bose-Einstein-Kondensation verschwinden;
im Fermi-Fall dagegen ist es positiv, bei entspricht es der Fermi-Energie.

Analog existiert für Fermionen die Fermi-Dirac-Statistik, die ebenso wie die Bose-Einstein-Statistik im Grenzfall großer Energie in die Boltzmann-Statistik übergeht.

Kernpunkt der Bose-Einstein-Statistik ist, dass bei gleichzeitiger Vertauschung aller vier Variablen zweier Bosonen ( und : Ortsvariable; : Spinvariable) die Wellenfunktion bzw. der Zustandsvektor eines Vielteilchensystems nicht das Vorzeichen wechselt , während es in der Fermi-Dirac-Statistik sehr wohl wechselt . Im Gegensatz zu Fermionen können deshalb mehrere Bosonen im gleichen Ein-Teilchen-Zustand sein, also die gleichen Quantenzahlen haben.

Bei Wechselwirkungsfreiheit

Bei Wechselwirkungsfreiheit (Bosegas) ergibt s​ich für Bosonen d​ie folgende Formel:

mit

  • dem chemischen Potential , welches für Bosonen stets kleiner als der niedrigste mögliche Energiewert ist: ;
    daher ist die Bose-Einstein-Statistik nur für Energiewerte definiert.
  • der Energienormierung . Die Wahl von hängt von der verwendeten Temperaturskala ab:
    • üblicherweise wird sie gewählt zu mit der Boltzmann-Konstanten ;
    • sie beträgt , wenn die Temperatur in Energieeinheiten, etwa Joule, gemessen wird; dies geschieht, wenn auch in der Definition der Entropie – welche dann einheitenlos ist – nicht auftaucht.

Unterhalb einer sehr tiefen kritischen Temperatur erhält man bei Wechselwirkungsfreiheit – unter der Annahme, dass gegen das Energie-Minimum strebt – die Bose-Einstein-Kondensation.

Man beachte, dass es sich bei um die Besetzungszahl eines Quantenzustandes handelt. Benötigt man die Besetzungszahl eines entarteten Energieniveaus, so ist obiger Ausdruck zusätzlich mit dem entsprechenden Entartungsgrad zu multiplizieren (: Spin, bei Bosonen immer ganzzahlig), vgl. auch Multiplizität.

Literatur

  • U. Krey, A. Owen: Basic Theoretical Physics – a Concise Overview. Springer, Berlin//Heidelberg/New York 2007, ISBN 978-3-540-36804-5 (auf Englisch).
  • L. D. Landau, E. M. Lifschitz: Statistische Physik. Verlag Harri Deutsch (ehem. Akademie Verlag), Berlin 1987 (verwendet unübliche Temperatureinheit).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.