Stochastisch unabhängige Zufallsvariablen
Die stochastische Unabhängigkeit von Zufallsvariablen ist ein zentrales Konzept der Wahrscheinlichkeitstheorie und der Statistik, das die stochastische Unabhängigkeit von Ereignissen und die Unabhängigkeit von Mengensystemen verallgemeinert. Die stochastische Unabhängigkeit von Zufallsvariablen wird beispielsweise bei der Formulierung des Zentralen Grenzwertsatzes benötigt.
Definition für zwei Zufallsvariablen
Gegeben seien ein Wahrscheinlichkeitsraum sowie zwei Messräume und und zwei Zufallsvariablen
und
- .
Die beiden Zufallsvariablen heißen stochastisch unabhängig oder einfacher unabhängig, wenn für jedes und jedes gilt, dass
- .
Meist werden die Mengen kompakter notiert, indem man anstelle von einfach schreibt. Dann lautet die Definition
für alle . Außerdem werden – weiter vereinfachend – häufig die Mengenklammern weggelassen, so dass die Notation
resultiert, die auch im Folgenden verwendet wird.
Eine alternative Definition wird durch die stochastische Unabhängigkeit von Ereignissen ermöglicht. Man definiert dann
- .
Die Zufallsvariablen heißen dann stochastisch unabhängig, wenn für alle gilt, dass die und stochastisch unabhängige Ereignisse sind, also
gilt.
Beispiel
Wir betrachten den Wahrscheinlichkeitsraum mit Grundmenge , σ-Algebra und als Wahrscheinlichkeitsmaß die Gleichverteilung auf der Grundmenge. Sei und . Die Zufallsvariablen sind definiert als
- .
Jede der σ-Algebren hat 4 Elemente: . Demnach wären 16 Kombinationen zu überprüfen. Die Fälle, in denen eine der beteiligten Mengen die Obermenge oder die leere Menge ist, können jedoch ausgeschlossen werden, da jede Menge von diesen beiden unabhängig ist. Demnach bleiben nur 4 Fälle übrig: oder kombiniert mit oder
- Sei . Dann ist und sowie . Diese Ereignisse sind unabhängig, denn es ist .
- Sei . Dann ist und sowie . Diese Ereignisse sind unabhängig, denn es ist .
- Sei und . Dann ist und sowie . Diese Ereignisse sind unabhängig, denn es ist .
- Sei und . Dann ist und sowie . Diese Ereignisse sind unabhängig, denn es ist .
Somit sind alle Ereignisse unabhängig und demnach auch die Zufallsvariablen.
Allgemeine Definition
Die Familie von Zufallsvariablen , für eine beliebige Indexmenge heißt stochastisch unabhängig, falls für jede endliche Teilmenge von gilt, dass
für alle gilt.
Mit der Unabhängigkeit für Mengensysteme wird die stochastische Unabhängigkeit von Zufallsvariablen auch wie folgt definiert: Eine Familie von Zufallsvariablen ist genau dann stochastisch unabhängig, wenn ihre Initial-σ-Algebren voneinander unabhängig sind.
Diese Definition kann äquivalent auf Zufallsvektoren, also auf -wertige Zufallsvariablen, angewandt werden.[1] An die Unabhängigkeit der Komponentenabbildungen sind dabei keine weiteren Forderungen gestellt.
Kriterien für Unabhängigkeit
Erzeugendensysteme
Die Anzahl der auf Unabhängigkeit zu überprüfenden Mengen lässt sich reduzieren, wenn ein Erzeuger bekannt ist. Existiert zu jeder σ-Algebra ein durchschnittsstabiler Erzeuger , gilt also , so genügt es, die Unabhängigkeit auf den Erzeugern zu überprüfen. Das Kriterium reduziert sich dann zu
für alle und alle endlichen Teilmengen von . Für diskrete Wahrscheinlichkeitsräume wählt man als Erzeuger meist die Punktmengen , für reelle Zufallsvariablen die halboffenen Intervalle als Erzeuger der Borelsche σ-Algebra.
Endliche Familien
Ist die Familie von Zufallsvariablen und damit auch die Indexmenge endlich, zum Beispiel mit Indexmenge , so genügt es
für alle zu überprüfen. Auf die Überprüfung der Teilmengen kann verzichtet werden. Dies folgt daraus, dass ist. Der Fall mit folgt dann automatisch aus dem obigen Fall, man setzt für dann und erhält daraus die Aussage für die kleinere Indexmenge.
Für endliche Familien diskreter Zufallsvariablen
Beide oben genannten Kriterien lassen sich für eine endliche Familie von Zufallsvariablen, die Werte in einem diskreten Messraum annehmen zusammenfassen. Sei und seien die Zufallsvariablen von nach und sei diskret, also endlich oder abzählbar unendlich. Dann sind die Zufallsvariablen genau dann unabhängig, wenn
für alle gilt.
Für endliche Familien reeller Zufallsvariablen
Für endliche Familien reellwertiger Zufallsvariablen ergibt sich folgendes Kriterium: Die Zufallsvariablen sind genau dann stochastisch unabhängig, wenn
für alle gilt. Sind also die Verteilungsfunktionen der sowie die gemeinsame Verteilungsfunktion, dann sind die genau dann stochastisch unabhängig, wenn
gilt. Falls die eine gemeinsame Dichtefunktion besitzen, so sind sie genau dann stochastisch unabhängig, wenn
gilt. Dabei bezeichnet die Randdichte von .
Existenz unabhängiger Zufallsvariablen
Für abzählbar unendliche Familien von Zufallsvariablen stellt sich die Frage, ob überhaupt ein „genügend großer“ Wahrscheinlichkeitsraum existiert, so dass die gesamte Familie auf diesem Wahrscheinlichkeitsraum unabhängig ist. Es ist nicht offensichtlich, dass dies möglich ist, alternativ könnte die Unabhängigkeit eine zu starke Forderung sein, da die Initial-σ-Algebren bei vielen Zufallsvariablen immer zwangsläufig abhängig sind.
Tatsächlich lässt sich die Frage aber mittels des Produktmaßes positiv beantworten. Betrachtet man das unendliche Produktmodell
und definiert als Familie von Zufallsvariablen genau die Projektionen auf die i-ten Komponenten , so ist diese Familie per Definition des Produktmodells und des Produktmaßes unabhängig und die Projektionen haben genau die Verteilung auf dem Ereignisraum . Das Produktmodell ist also groß genug, um eine unabhängige Familie von Zufallsvariablen zu enthalten. Andererseits wird dadurch das Problem der Existenz von unendlich vielen unabhängigen Zufallsvariablen auf die Existenz eines unendlichen Produktmaßes zurückgeführt, was nicht selbstverständlich ist. Diese Existenzfrage wird beispielsweise durch den Satz von Andersen-Jessen für beliebige Indexmengen positiv beantwortet, kann aber auch für abzählbare Indexmengen über den Satz von Ionescu-Tulcea oder für Borel'sche Räume über den Erweiterungssatz von Kolmogorov erfolgen.
Unkorreliertheit und Unabhängigkeit
Zwei Zufallsvariablen heißen unkorreliert, wenn ihre Kovarianz gleich null ist. Diese Definition der Unkorreliertheit setzt nicht voraus, dass der Korrelationskoeffizient existiert und damit die Varianzen beider Zufallsvariablen positiv sind.
Aus Unabhängigkeit der Zufallsvariablen folgt ihre Unkorreliertheit, falls die Erwartungswerte , und endlich sind. Sind nämlich die Zufallsvariablen unabhängig, so gilt und demnach
- .
Dabei folgt die erste Gleichheit aus dem Verschiebungssatz für die Kovarianz und die zweite aus der Unabhängigkeit der Zufallsvariablen und der obigen Folgerung für den Erwartungswert.
Aus der Unkorreliertheit folgt nicht stochastische Unabhängigkeit. Ein Beispiel dafür sind die Zufallsvariable , die gleichverteilt auf ist und . Es gilt dann
- ,
die Zufallsvariablen sind also unkorreliert. Sie sind aber nicht unabhängig, denn es ist zum Beispiel
und
- .
Die Abhängigkeit folgt dann aus .
Analyse auf Abhängigkeit
Für die Analyse auf Abhängigkeit zweier Zufallsvariablen kann man auch testen, ob der Korrelationskoeffizient Null ist. Wenn die Hypothese abgelehnt wird, geht man davon aus, dass diese Variablen stochastisch abhängig sind. Der Umkehrschluss ist allerdings nicht zulässig, denn es können Abhängigkeitsstrukturen vorliegen, die der Korrelationskoeffizient nicht erfassen kann. Jedoch sind beispielsweise unkorrelierte, gemeinsam normalverteilte Zufallsvariablen auch stochastisch unabhängig.
Unabhängigkeit von Zufallsvariablen und Mengensystemen
Im Rahmen des bedingten Erwartungswertes wird teilweise auch von der Unabhängigkeit einer Zufallsvariable und eines Mengensystems gesprochen. Die Zufallsvariable und das Mengensystem heißen unabhängig, wenn das Mengensystem und die Initial-σ-Algebra der Zufallsvariable unabhängige Mengensysteme sind.
Verallgemeinerungen
Mittels des bedingten Erwartungswertes lässt sich sowohl die Unabhängigkeit von Mengensystemen als auch die Unabhängigkeit von Zufallsvariablen zur bedingten Unabhängigkeit erweitern.
Literatur
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6.
- Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt. 8. Auflage. Vieweg, Wiesbaden 2005, ISBN 3-8348-0063-5.
- Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7.
- Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2.
- A. M. Prochorow: Independence. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics, Kluwer Academic Publishers, 2001, ISBN 978-1-55608-010-4 (online).
Weblinks
Einzelnachweise
- Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 95, doi:10.1007/978-3-642-45387-8.