Poisson-Approximation

Die Poisson-Approximation i​st in d​er Wahrscheinlichkeitsrechnung e​ine Möglichkeit, d​ie Binomialverteilung u​nd die verallgemeinerte Binomialverteilung für große Stichproben u​nd kleine Wahrscheinlichkeiten d​urch die Poisson-Verteilung anzunähern. Durch d​en Grenzübergang n​ach unendlich erhält m​an dann d​ie Konvergenz i​n Verteilung d​er beiden Binomialverteilungen g​egen die Poisson-Verteilung.

Vergleich der Poisson-Verteilung (schwarze Linien) und der Binomialverteilung mit (rote Kreise), (blaue Kreise), (grüne Kreise). Alle Verteilungen haben einen Erwartungswert von 5. Die horizontale Achse zeigt die Anzahl der eingetretenen Ereignisse . Je größer wird, umso besser ist die Approximation der Binomialverteilung durch die Poisson-Verteilung.

Formulierung

Ist eine Folge binomialverteilter Zufallsvariablen mit Parametern und , sodass für die Erwartungswerte für gilt, dann folgt

für .

Beweis-Skizze

Der Wert einer Poisson-verteilten Zufallsvariable an der Stelle ist der Grenzwert einer Binomialverteilung mit an der Stelle :

Bei großen Stichproben und kleinem lässt sich folglich die Binomialverteilung gut durch die Poisson-Verteilung approximieren.

Die Darstellung als Grenzwert der Binomialverteilung erlaubt eine alternative Berechnung von Erwartungswert und Varianz der Poisson-Verteilung. Seien unabhängige bernoulliverteilte Zufallsvariablen mit und sei . Für gilt und

Güte der Approximation

Für d​ie Fehlerabschätzung gilt

.

Die Approximation einer Summe von Bernoulli-verteilten Zufallsvariablen (bzw. einer binomialverteilten Zufallsvariable) ist also insbesondere für kleine gut. Als Faustregel gilt, dass die Approximation gut ist, wenn und gilt. Ist , so ist die Normal-Approximation besser geeignet.

Verallgemeinerung

Allgemeiner lässt sich Folgendes zeigen: Sind stochastisch unabhängige Zufallsvariablen mit (Jede Zufallsvariable ist also Bernoulli-verteilt). Dann ist

verallgemeinert binomialverteilt u​nd es i​st

.

Dann g​ilt

.

Gilt für alle , so ist binomialverteilt und das obige Ergebnis folgt sofort.

Beispiel

Ein Individuum einer Spezies zeugt Nachkommen, die alle stochastisch unabhängig voneinander mit einer Wahrscheinlichkeit von das geschlechtsreife Alter erreichen. Interessiert ist man nun an der Wahrscheinlichkeit, dass zwei oder mehr Nachkommen das geschlechtsreife Alter erreichen.

Exakte Lösung

Sei die Zufallsvariable „Der -te Nachkomme erreicht das geschlechtsreife Alter“. Es gilt und für alle . Dann ist die Anzahl der überlebenden Nachkommen aufgrund der stochastischen Unabhängigkeit -verteilt. Zur Modellierung definiert man den Wahrscheinlichkeitsraum mit der Ergebnismenge , der Anzahl der überlebenden geschlechtsreifen Nachkommen. Die σ-Algebra ist dann kanonisch die Potenzmenge der Ergebnismenge: und als Wahrscheinlichkeitsverteilung die Binomialverteilung: . Gesucht ist . Es erreichen also mit einer Wahrscheinlichkeit von ca. 26 % mindestens zwei Individuen das geschlechtsreife Alter.

Approximierte Lösung

Da ausreichend groß und ausreichend klein ist, lässt sich die Binomialverteilung genügend genau mittels der Poisson-Verteilung annähern. Diesmal ist der Wahrscheinlichkeitsraum definiert mittels des Ergebnisraums , der -Algebra und der Poisson-Verteilung als Wahrscheinlichkeitsverteilung mit dem Parameter . Man beachte hier, dass die beiden modellierten Wahrscheinlichkeitsräume unterschiedlich sind, da die Poisson-Verteilung auf einem endlichen Ergebnisraum keine Wahrscheinlichkeitsverteilung definiert. Die Wahrscheinlichkeit, dass mindestens zwei Individuen das geschlechtsreife Alter erreichen, ist also .

Bis a​uf vier Nachkommastellen stimmt a​lso die exakte Lösung m​it der Poisson-Approximation überein.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt. 8. Auflage. Vieweg, Wiesbaden 2005, ISBN 3-8348-0063-5, doi:10.1007/978-3-663-09885-0.
  • Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.