Tensorprodukt
Das Tensorprodukt ist ein universelles Objekt der multilinearen Algebra und somit ein vielseitiger Begriff der Mathematik: In der linearen Algebra und in der Differentialgeometrie dient es zur Beschreibung multilinearer Abbildungen, in der kommutativen Algebra und in der algebraischen Geometrie entspricht es einerseits der Einschränkung geometrischer Strukturen auf Teilmengen, andererseits dem kartesischen Produkt geometrischer Objekte.
Die Definition für den allgemeinen multilinearen Fall durch die universelle Eigenschaft im Sinne der Kategorientheorie befindet sich im Abschnitt zur universellen Eigenschaft. Eine konstruktive Definition – will sagen: eine Konstruktion und damit ein Beweis der Existenz des universellen Objekts – wird zuvor in koordinatenbasierter Weise in diesem Abschnitt gegeben. Auch wenn als Einstieg also eine koordinatenbasierte konstruktive Definition des Tensorprodukts mit nachfolgender Beleuchtung der wesentlichen Eigenschaften gewählt wurde, so legt dieser Artikel doch den Schwerpunkt auf die mathematischen und koordinatenfreien Aspekte des Tensorprodukts, ohne jedoch die Koordinatendarstellung zu übergehen: Siehe hier, da und dort. Für einzelne Tensoren und Koordinatendarstellungen siehe Tensor.
Für die basisfreie Konstruktion sei auf den Artikel über das Tensorprodukt von Moduln verwiesen.
In der Physik bezeichnet man Elemente des Tensorprodukts
(für einen Vektorraum mit Dualraum , oft ) als gemischte Tensoren, kontravariant der Stufe und kovariant der Stufe . Kurz spricht man von Tensoren vom Typ . So lassen sich lineare Abbildungen als Tensoren aus oder aber als Tensoren auf dem Dualraum interpretieren. Wie sich diese zunächst verwirrende Vielfalt widersprüchlich erscheinender Auffassungen dem allgemeinen Verständnis von Tensoren unterordnet, erklären die Abschnitte über Homomorphismen als Tensoren und Tensoren vom Typ (vgl. auch den Artikel Tensor).
Der Begriff wird zunächst am einfachsten Beispiel des Tensorprodukts auf Vektorräumen erläutert, bevor skizziert wird, wie er auf Moduln verallgemeinert wird. Darauf folgt der Fall des Tensorprodukts von Algebren sowie des Tensorprodukts von Darstellungen (etwa solcher endlicher Gruppen).
Tensorprodukt von Vektorräumen
Einleitung
Das Tensorprodukt ist ein universelles Objekt der multilinearen Algebra, genauer: ein Anfangsobjekt (Synonyme: initiales Objekt, engl.: universally repelling object).[1] Als solches ist es nur bis auf Isomorphie eindeutig bestimmt. Was auf den ersten Blick enttäuschend klingen mag, bedeutet in Wahrheit jedoch die äußerst flexible Anwendbarkeit dieses Begriffs. Im Mittelpunkt stehen – als Erweiterung des Begriffs der linearen Abbildungen – die multilinearen Abbildungen. Dies sind Abbildungen in linearen Variablen (Vektoren), die in jeder einzelnen für sich genommen, während die anderen unverändert bleiben, linear sind. Dass Messgrößen in dieser Weise voneinander abhängen, beobachtet die Physik häufig. Im Falle von spricht man von (uni)linearen, bei von bilinearen, für von trilinearen, im allgemeinen Falle von -fach multilinearen Abbildungen. Für alles Folgende muss daher notwendig vorausgesetzt werden, dass der Grundkörper kommutativ ist, also kein Schiefkörper. (Der nicht-kommutative Fall wird im Abschnitt über das Tensorprodukt auf Moduln über nicht-kommutativen Ringen und darin speziell hier skizziert.)
- In Parenthese: Man mag die Situation mit der elementaren Situation für einen Körper vergleichen, der ja über sich selbst einen Vektorraum bildet und dessen Elemente also als Vektoren aufgefasst werden können: Eine unilineare, d. h. lineare Abbildung () ist eine Multiplikation mit einem Körperelement („Skalar“) , d. h.: . Bilineare Abbildungen sind Produkte zweier linearer Abbildungen und haben daher quadratische Ordnung: . Trilineare Abbildungen haben entsprechend kubische Ordnung, und allgemein sind -fach multilineare Abbildungen das Produkt von linearen Abbildungen. Das Tensorprodukt von Vektorräumen verallgemeinert diese Bildung: Allerdings müssen zu diesem Zweck – im Gegensatz zu der eben beschriebenen elementaren Situation – sowohl eine (-fach multilineare) „Multiplikation für Vektoren“ (zumal aus unterschiedlichen -Vektorräumen), nämlich das Tensorprodukt, als auch der Tensorproduktraum, in dem diese Produkte liegen, erst geschaffen werden. Dabei werden der Tensorproduktraum und das Tensorprodukt als ein universelles Objekt definiert, sodass jede multilineare Abbildung mit ihnen linear parametrisiert werden kann. Diese Parenthese möge verdeutlicht haben, dass – salopp gesagt – multilineare Abbildungen ebenso (wenig) linear sind, wie es bspw. kubische Monome sind.
Beispiele für multilineare Abbildungen auf ein und demselben Vektorraum der Dimension sind (insbesondere aus dem Anschauungsraum ) bekannt:
- Das (innere) Skalarprodukt: Dies ist ein Produkt zweier Vektoren () aus dem Vektorraum mit Werten im Grundkörper . Es misst die Länge der (gerichteten) Projektion des einen Vektors auf den anderen skaliert mit dessen Länge.
- Das Vektorprodukt oder Kreuzprodukt oder äußere Produkt: Dies ist ein Produkt von Vektoren aus dem Vektorraum und liefert einen Vektor, dessen Länge im -Dimensionalen das „vorzeichenbehaftete“ (da orientierte) Volumen des von Vektoren aufgespannten Hyperquaders misst, und der senkrecht (orthogonal) und in positiver Orientierung auf dem Hyperquader steht.
- Die Determinante misst (als Volumenform) im -Dimensionalen das – ebenfalls orientierte – Volumen des von Vektoren aufgespannten Quaders als Skalargröße. Für sie ist also . Sie lässt sich auch als Skalarprodukt von einem ihrer Vektoren mit dem Vektorprodukt der übrigen Vektoren errechnen. (Dem entspricht die Entwicklungsformel nach einer Spalte oder Zeile.) Sie lässt sich durch das Spatprodukt (verallgemeinert ins -Dimensionale) vom Kreuzprodukt ableiten.
- Allgemeiner betrachtet ist klar, dass das -dimensionale Volumen eines von Vektoren aufgespannten Parallelotops im -dimensionalen Raum () linear von jedem einzelnen Vektor abhängt und verschwindet, sobald zwei Vektoren gleich sind, weil die Vektoren dann einen höchstens -dimensionalen Vektorraum aufspannen und das Parallelotop folglich kollabiert. Die Messung -dimensionaler Volumina ist also ein elementargeometrisches Beispiel einer alternierenden -stufigen Multilinearform und liefert daher bei einen antisymmetrischen Tensor. Hiermit im Zusammenhang stehen die Graßmann-Algebra und – bei weiterer Verallgemeinerung – die Clifford-Algebra. Die Determinante behandelt den Fall .
Die duale Paarung hingegen ist eine bilineare Abbildung auf einem Vektorraum und seinem Dualraum mit Werten im Grundkörper, also eine Bilinearform: Sie besteht in der bloßen Auswertung eines Kovektors (einer Linearform) auf einem Vektor und ermöglicht es, einen Vektorraum als einen Unterraum seines Bidualraumes aufzufassen, bei endlicher Dimension sogar mit ihm kanonisch zu identifizieren.
All diese „Produkte“ verdienen diesen Namen, weil sie bilinear bzw. multilinear sind, und stellen daher – trotz ihrer Verschiedenheit – Beispiele für Tensoren dar. Tensoren sind multilineare Abbildungen, und das Tensorprodukt lässt sich als ein universeller Tensor verstehen: Alle denkbaren multilinearen Abbildungen (Produkte von Vektoren aus vorgegebenen Vektorräumen) lassen sich mit Hilfe des Tensor(produkt)raumes einheitlich beschreiben.
Da – zumal im endlichdimensionalen Falle – etliche Identifikationen rund um Vektorräume, ihre Dualräume und die Räume linearer Abbildungen möglich sind, gibt es für den Tensorproduktraum viele isomorphe Deutungen. Daher lassen sich in der Literatur viele Zugänge und unterschiedliche Betrachtungsweisen finden. Das Wesen des Tensorprodukts liegt jedoch in der Betrachtung multilinearer Abbildungen , also Abbildungen, die in jeder einzelnen Komponente () bei festgehaltenen übrigen Komponenten -linear sind. Der Raum dieser Abbildungen ist in naheliegender Weise ein Vektorraum über und wird mit bezeichnet. Es ist .
Es wird zunächst der Fall der bilinearen Abbildungen () behandelt, bevor der allgemeine Fall der multilinearen Abbildungen in verdichteter Form betrachtet wird.
Sesquilinearität im komplexen Fall
Für den komplexen Fall ist zu beachten, dass an die Stelle der Bilinearität meist die Sesquilinearität tritt, wie etwa im Falle hermitescher Sesquilinearformen, wie es positiv definite Skalarprodukte sind: Das heißt, dass die Abbildung nur in einem der beiden Argumente linear ist, im anderen stattdessen antilinear oder semilinear: Dies bedeutet, dass die komplexe Konjugation als Involution ins Spiel kommt – und darin auch bleibt. Somit ist an manchen Stellen die Linearität durch Antilinearität (Semilinearität) zu ersetzen, siehe bspw. den Abschnitt zum Tensorprodukt von Hilbert-Räumen.
Gemischte Tensoren
Wie erwähnt, beobachtet die Physik häufig, dass eine Messgröße, sei sie skalar- oder vektorwertig, von mehreren anderen abhängt und zwar von jeder einzelnen in linearer Weise. Wie sich die Abhängigkeit insgesamt beschreiben lässt, gibt der zugehörige Tensor an. Typischerweise entstammen die Observablen demselben Vektorraum oder aber seinem Dualraum . Dies führt (für den grundlegenden Fall ) zu dem in der Physik üblichen Begriff der (gemischten) Tensoren vom Typ , der -fach kontravarianten und -fach kovarianten Tensoren (der Stufe ): . Tatsächlich entstand der Begriff des Tensors zuerst in der Physik der Spannungstensoren, wie im Artikel zum Tensor nachzulesen ist (siehe auch Kontinuumsmechanik, Trägheitstensor und Verzerrungstensor).
Tensoren mit besonderen Eigenschaften
Unter den Tensoren gibt es solche mit weiteren speziellen Eigenschaften wie symmetrische Tensoren, alternierende Tensoren (siehe auch alternierende Multilinearformen, alternierende Matrizen bzw. antisymmetrische Tensoren und symmetrische und antisymmetrische Tensoren), insbesondere das Vektorprodukt (siehe auch im Kontext krummliniger Koordinaten), schiefsymmetrische Tensoren etc.
Verknüpfungen von Tensoren
Da Tensorprodukträume ihrerseits Vektorräume sind, lassen sich multilineare Abbildungen auf ihnen und damit ihr Tensorprodukt bilden: Äußeres (siehe auch hier) und inneres Produkt sowie Tensorverjüngung (siehe auch Abschnitte zur Spurbildung und Verjüngung bzw. Kontraktion) sind Beispiele multilinearer Abbildungen von Tensoren. Formelsammlungen befinden sich in der Formelsammlung Tensoralgebra oder im Internet.[Anm 1]
Einige Anwendungsgebiete
In der Tensoranalysis werden Tensorfelder betrachtet. Sie kommen durch die Tangentialräume und Tensorbündel ins Spiel, hier befindet sich eine Formelsammlung dazu.
In der Theorie der Algebren wird das Konzept des Tensorprodukts genutzt, um Algebren zu konstruieren wie bspw.:
- die Tensoralgebra
- die Graßmann-Algebra
- die Clifford-Algebra
Das Tensorprodukt von Algebren spielt eine zentrale Rolle bei der Untersuchung von Azumaya-Algebren (d. h. zentraler einfacher endlichdimensionaler Algebren), worin sich Algebrentheorie und Zahlentheorie begegnen und den Satz von Skolem-Noether liefern sowie einen Beweis des Satzes von Wedderburn mit Hilfe der verschränkten Produkte (Faktorensystem) von Emmy Noether ermöglichen. Die Definition der Brauergruppe beruht auf der Verwendung des Tensorproduktes von Azumaya-Algebren.
Erinnerung an die (uni)lineare Algebra: Illustration am Beispiel N = 1
Der Fall ist aus der (uni)linearen Algebra bekannt: Der Koordinatenraum ist ein Modell für jeden -dimensionalen -Vektorraum. So könnte dieser unilineare Fall auch als Induktionsanfang für eine induktive Definition und die Definition für das bilineare Tensorprodukt als Induktionsschritt benutzt werden (siehe diesen Abschnitt), doch ist die Definition für den allgemeinen Fall auch unmittelbar möglich.
Lineare Abbildungen können in Koordinatenräumen dargestellt werden. Insbesondere können sie durch Linearformen (also durch lineare Abbildungen in den Grundkörper) dargestellt werden, wie kurz erläutert werden soll: Es seien dazu und Vektorräume über dem Grundkörper mit den Basen bzw. . (Bei endlichen Dimensionen denke man sich und .) Jede Abbildung einer Menge (!) in den Vektorraum zerfällt in naheliegender Weise in die Summe von Komponentenabbildungen definiert durch , wobei die kanonischen Projektionen bezeichne. In dieser Weise lassen sich alle vektorwertigen Funktionen zerlegen, insbesondere lineare Abbildungen in die Summe der zugehörigen Linearformen .
Aus der (uni)linearen Algebra ist bekannt, dass derartige Linearformen als Kovektoren bezeichnet werden und dual zu den Ursprungsvektoren beschrieben werden: Werden die Vektoren als Spaltenvektoren dargestellt (bezogen auf die gewählte Basis), so können die Kovektoren als Zeilenvektoren dargestellt werden und sind als Elemente des Dualraumes zu verstehen: Als solche sind sie eindeutig als eine Linearkombination der zu dualen Basis darstellbar. Bei endlicher Dimension besteht eine – freilich basisabhängige – Isomorphie zwischen Dualraum und Ursprungsraum, während die Isomorphie zwischen Bidualraum und Ursprungsraum kanonisch ist. („Der Ursprungsraum ist der Dualraum seines Dualraums.“)
Zusammengefasst: Jede lineare Abbildung lässt sich als Linearkombination von Linearformen (Kovektoren) darstellen. Die elementaren Bausteine linearer Abbildungen sind also Kovektoren , und diese sind – als Elemente des Dualraums – gut bekannt. Die Koordinatenabbildung [Anm 2] liefert eine konkrete Darstellung als Spalten- bzw. Zeilenvektoren, mit deren Hilfe jede lineare Abbildung mit einer eindeutig bestimmten linearen Abbildung als Kompositum dargestellt werden kann.
Das -fache Tensorprodukt klärt dieselbe Fragestellung für -fach multilineare Abbildungen und wird ebenfalls liefern: Jede derartige multilineare Abbildung ist mit Hilfe einer eindeutig bestimmten linearen Abbildung darstellbar als . Um alle multilinearen Abbildungen („Tensoren“) zu kennen, genügt es also, das Tensorprodukt zu kennen, denn es ist universell: Jede multilineare Abbildung ist ein (sogar eindeutig bestimmtes) lineares Abbild des Tensorprodukts. So erscheint das Tensorprodukt als eine multilineare Koordinatenabbildung, mit der jeder Tensor auf eindeutige Weise linear parametrisiert werden kann. Man darf sie sich als eine multilineare Koordinatenabbildung vorstellen, die minimal mit der Eigenschaft ist, dass jede multilineare Abbildung ihr lineares Abbild ist. Die Minimalität sichert die Eindeutigkeit des linearen Abbildes. Als Koordinatenraum für die Koordinatendarstellung von Tensoren wird sich der Raum der -dimensionalen (Super-)Matrizen empfehlen. Der folgende Unterabschnitt präzisiert diese Überlegungen.
N beliebig: Multilineare Algebra
Der Fall zeigt also: Unilineare Abbildungen lassen sich durch Multiplikation mit Matrizen beschreiben, die den zugehörigen Koordinatenraum von (bezüglich einer Basis in ) in denjenigen von (bezüglich einer Basis in ) linear abbildet. Sie sind in Summen elementarer Tensoren zerlegbar.
Ist nun beliebig und eine Familie von Vektorräumen, so korrespondiert mit einer -fach multilinearen Abbildung (nach Auswahl von (geordneten) Basen in bzw. in ) eine -fach multilineare Abbildung , die das Produkt der zugehörigen Koordinatenräume multilinear in abbildet (bezüglich der gewählten Basen, versteht sich) und die sich durch Multiplikation mit Matrizen beschreiben lässt: Dabei handelt es sich um „Supermatrizen“ , also um -fach multiindizierte Matrizen: Das -Tupel der unteren Indizes korrespondiert mit dem -Tupel von Koordinatenvektoren aus , die Vektoren aus bezüglich der zugehörigen Basen identifizieren, der obere Index korrespondiert entsprechend mit Koordinatenvektoren bezüglich der Basis . Auch diese Supermatrizen können in eine Summe elementarer Tensoren zerlegt werden.
- Zwischenbemerkung: Zwar ist auch bzw. ein Vektorraum, aber die (uni)linearen Abbildungen aus und die -fach multilinearen Abbildungen aus haben für nur die triviale Nullabbildung gemein. (Bspw. ist schon die Identität auf dem kartesischen Produkt von Vektorräumen nicht multilinear.) Mit anderen Worten: Betrachtet man als ein Objekt aus der Kategorie der Vektorräume, so gehören die multilinearen Abbildungen auf diesem Raum nicht zu den Morphismen dieser Kategorie (mit der trivialen Ausnahme der Nullabbildung).
Also lassen sich diese multilinearen Abbildungen als unilineare Abbildungen auf dem Raum auffassen, und dies ist gerade der Inhalt der universellen Eigenschaft – ergänzt um die Aussage, dass diese Eigenschaft den Tensorproduktraum kennzeichnet: . So spiegelt sich das kartesische Produkt der Basen im Tensorproduktraum wider: Der Tensorproduktraum wird von eben diesem kartesischen Produkt der Basen aufgespannt, wie die Konstruktion zeigen wird.
-fach multilineare Abbildungen auf einem -fachen kartesischen Produkt von Vektorräumen sind also als unilineare Abbildungen auf dem zugehörigen -fachen Tensorproduktraum der Vektorräume aufzufassen, und dieser ist das freie lineare Erzeugnis des kartesischen Produkts zugehöriger Basen. Durch den Übergang zum Tensorprodukt(raum) gelingt es also, multilineare Abbildungen, die keine Morphismen der Kategorie der Vektorräume sind, als (uni)lineare Abbildungen und mithin als Morphismen der betrachteten Kategorie darzustellen.[Anm 3]
Der unilineare Fall liefert für die einstufigen kovarianten Tensoren, also Kovektoren oder Linearformen aus dem Dualraum . Ist ihre Dimension gleich 1, ist also , so sind es gar Skalare. Also lassen sich auch Skalare als (einstufige) Tensoren (eines eindimensionalen Vektorraumes) auffassen.[Anm 4]
Zur Motivation aus quantenmechanischer Sicht
In der Quantenmechanik ist der Zustandsraum eines Objekts ein Hilbertraum. Hat man Teilchen mit Zuständen in Hilberträumen und betrachtet nun die Zustände des aus den Teilchen gebildeten Systems , so sind da zunächst die Zustände, die die Information zusammenfassen, die in den Zuständen dieser Teilchen, jedes für sich allein, enthalten ist, und die man reine oder Produktzustände nennt. Die Quantenmechanik beobachtet, dass auch jede Überlagerung (Superposition) von Zuständen eines Objekts (hier ) wieder ein möglicher Zustand des Objekts ist – von der Normierung auf die Länge 1 sei hierbei abgesehen. Entsprechend enthält das mathematische Modell außer den genannten Produktzuständen auch beliebige Linearkombinationen von ihnen, wobei und ; und die Gesamtheit solcher Linearkombinationen bildet den Hilbertraum des Systems , d. h., die Produktzustände spannen den Hilbertraum des Systems auf. Der neue Vektorraum wird mit bezeichnet und Tensorprodukt genannt. Weitere Einzelheiten sind dem Artikel zur Quantenverschränkung, insbesondere auch der dortigen mathematischen Betrachtung zu entnehmen.
Definition durch koordinatenbasierte Konstruktion
Es seien und zwei Vektorräume über einem gemeinsamen kommutativen Skalarkörper . Unter dem Tensorprodukt dieser beiden Vektorräume versteht man ein Paar bestehend aus
- einem Tensorproduktraum und
- einer bilinearen Abbildung in den Tensorproduktraum.
Der Tensorproduktraum wird hier, die bilineare Abbildung wird dort konstruiert.
- Zuvor jedoch ein Hinweis: Häufig spricht man abkürzend vom Tensorprodukt oder Tensorraum unter Vernachlässigung der bilinearen Abbildung . Da dies leicht das Verständnis des Tensorprodukt erschwert, soll in diesem Artikel die Rolle der bilinearen Abbildung hervorgehoben werden. Gelegentlich wird aber auch gerade diese Abbildung als das Tensorprodukt angesprochen. Die Elemente des Tensorraumes werden ebenfalls als Tensoren bezeichnet. Doch auch bilineare Abbildungen werden als Tensoren bezeichnet: Unter ihnen befindet sich also auch das Tensorprodukt selbst, und es zeichnet eine Eigenschaft aus, die „universell“ geheißen wird: Es ist ein universeller Tensor. Wie in weiteren Abschnitten deutlich werden wird, gibt es eine Fülle kanonischer Identifikationen rund um die Tensorräume. So können auch lineare, bilineare und multilineare Abbildungen als Tensoren begriffen werden, zumal wenn die (nicht notwendig kanonische) Identifikation eines endlichdimensionalen Vektorraums mit seinem Dualraum stillschweigend vorgenommen wird – auch dieses Vorgehen verschleiert das Konzept des Tensorprodukts. Grundlage bildet jedoch die nun folgende Definition der beiden Bestandteile und .
Definition des bilinearen Tensorproduktraums durch Konstruktion
Der Tensorproduktraum ist ein Vektorraum, der wie folgt konstruiert werden kann: Ist eine Basis von und eine Basis von , dann ist ein Vektorraum, genannt Tensorproduktraum, in dem es eine Basis gibt, die auf umkehrbar eindeutige Weise mit den geordneten Paaren des kartesischen Produkts
der Basen der Ausgangsräume identifiziert werden kann.
- NB: Diese Formulierung zeigt, dass der Tensorproduktraum nicht eindeutig festgelegt ist: Es kann durchaus verschiedene Realisierungen geben. Ihnen allen gemeinsam ist aber, dass sie (durch eine Bijektion der Basen aufeinander, wie beschrieben, und lineare Fortsetzung) sämtlich miteinander identifiziert werden können, d. h. isomorph sind. Tensorprodukt(räume) sind also nur bis auf Isomorphie eindeutig bestimmt.
Die Dimension von ist demzufolge gleich dem Produkt der Dimensionen von und . Das Element dieser Basis, das dem geordneten Paar entspricht, wird als notiert. Das Symbol hat dabei bis hierher keine tiefere Bedeutung. Es erhält erst durch die Definition der bilinearen Abbildung seine Bedeutung.
Da der Tensorproduktraum ein Vektorraum ist, hat also ein beliebiges Element des Tensorprodukts die Gestalt
wobei die Summe endlich ist oder – was auf dasselbe hinausläuft – fast alle Koeffizienten verschwinden (gleich Null sein) müssen. Die Redensweise „fast alle“ bedeutet hierbei gemäß üblichem Sprachgebrauch „alle, bis auf endlich viele“. Das ließe sich auch mit dem Begriff der eingeschränkten Summe notieren: , vergleiche hierzu etwa den Artikel zum eingeschränkten direkten Produkt. Ein Tensor des Tensor(produkt)raumes wird daher häufig mit der Matrix identifiziert, ähnlich wie Vektoren mit den sie darstellenden Koordinatenvektoren.
Mit anderen Worten: Der Tensorraum wird von den linear unabhängigen Elementen , die zunächst nur als Symbole begriffen werden, über dem Grundkörper frei erzeugt (vgl. die Artikel Direkte Summe und (allgemeiner) Produkt und Koprodukt):
- .
Definition der bilinearen Abbildung durch explizite Festlegung auf Erzeugenden
Man kann nun mit Hilfe dieser Basis ein Produkt von Vektoren aus und definieren, das mit demselben Verknüpfungssymbol notiert wird. Natürlicherweise ist das Produkt zweier Basisvektoren und gerade der Basisvektor, der mit bezeichnet wurde. Das Produkt beliebiger Vektoren wird nun durch bilineare Fortsetzung festgelegt:
- Zwei Vektoren
- und (wie oben auch hier: endliche Summen, da ein Grenzwertbegriff oder Konvergenzbegriff mangels topologischer Struktur nicht zur Verfügung steht)
- wird das Produkt
- zugeordnet. Diese Summe ist ebenfalls endlich, weil fast alle Produkte sind, da dies schon für die Koeffizienten und gilt. Somit ist die bilineare Abbildung definiert (unter Benutzung der obigen Bezeichnungen):
Tensoren, die sich in der Gestalt mit einem geeigneten Paar darstellen lassen, heißen elementare oder einfache Tensoren. Im Allgemeinen sind Tensoren jedoch keine elementaren Tensoren, sondern benötigen eine Summendarstellung (wie oben dargestellt) mit mehr als einem Summanden: Die elementaren Tensoren erzeugen den gesamten Tensorproduktraum.
Eigenschaften
Im Folgenden werden einige Eigenschaften zusammengestellt, die für das Tensorprodukt wesentlich sind.
Bilinearität
Für das Tensorprodukt von Vektoren gelten (gemäß der obigen Konstruktion durch die bilineare Fortsetzung) folgende Rechenregeln für alle und sowie :
(1) | ||
(2) | ||
(3) |
Mit anderen Worten: Die Abbildung ; ist -bilinear, das heißt in jeder der beiden Komponenten, während die andere unverändert bleibt, linear. (Das soll nicht überraschen, denn sie wurde durch bilineare Fortsetzung gewonnen.)
Diese Regeln sehen aus wie Distributivgesetze bzw. Assoziativgesetze, was den Namen Tensorprodukt motiviert.
Dimensionsformel
Die Dimensionsformel wurde bereits erwähnt: .
Kommutativität nicht gegeben
Ein Kommutativgesetz gilt im Allgemeinen nicht, denn für gehören die Tensoren
- und
nur dann demselben Vektorraum an, wenn die Räume und identisch sind. Jedoch sind auch in diesem Fall die Tensoren und im Allgemeinen verschieden: Siehe dazu Beispiele im Abschnitt über die Realisierung von Tensoren als Homomorphismen und im Abschnitt zum Kronecker-Produkt im endlichdimensionalen Fall.
Beachte: Es ist kein Widerspruch, dass dennoch ein natürlicher Isomorphismus von Vektorräumen besteht, der durch die Vertauschung definiert wird:
Elementare Tensoren als Erzeugende
Tensoren der einfachen Gestalt heißen elementare oder einfache oder reine Tensoren. Keineswegs hat jeder Tensor diese Gestalt: Allgemeine Tensoren sind – gemäß obiger Konstruktion – eine Linearkombination (eine endliche Summe) elementarer Tensoren. Dabei genügt es sogar, sich auf die elementaren Tensoren zu beschränken, die von den Ausgangsbasen und herrühren, wie bereits im Rahmen der Konstruktion erwähnt wurde und auch aus den Rechenregeln ableitbar ist.
Rang von Tensoren
Ein allgemeiner Tensor hat also die Gestalt mit einer Koeffizientenmatrix , die Bezug nimmt auf eine Basis von und eine Basis von . Man weist einem Tensor einen Rang zu, nämlich den Rang seiner Koeffizientenmatrix: Dieser Tensor hat also den Rang . Der Rang hängt (nach dem Elementarteilersatz) nicht von der Basiswahl in den Räumen ab. (Das gilt auch für das Tensorprodukt von Moduln über Hauptidealringen.) Dass der Begriff des Ranges eines Tensors mit dem Rang eines Homomorphismus bzw. einer Matrix übereinstimmt, sobald man Letztere als Tensor begreift, zeigt der Abschnitt über die Darstellungsmatrix eines Homomorphismus als Koeffizientenmatrix des zugehörigen Tensors.
Der Rang eines Tensors ist die minimale Anzahl von Summanden, die zu seiner Darstellung als Linearkombination einfacher Tensoren (mit und ) erforderlich ist. (Da ja nur endliche Linearkombinationen betrachtet werden, gibt es nach dem Satz vom kleinsten Element eine solche minimale Anzahl von Summanden.)
Elementare oder einfache oder reine Tensoren (ungleich null, scil.) sind also genau die Tensoren vom Rang 1.[Anm 5]
Lineare Fortsetzung von Abbildungen auf elementaren Tensoren
Die Tatsache, dass der Tensorproduktraum von den elementaren Tensoren über linear erzeugt wird, hat ein wichtiges Prinzip zur Folge, das die Definition linearer Abbildungen betrifft. Es bezeichne einen -Vektorraum und den Raum aller linearer Abbildungen .
Das Prinzip besagt:
- Um eine lineare Abbildung wohl zu definieren, genügt es, sie auf elementaren Tensoren festzulegen. Es genügt sogar die Bilder der elementaren Tensoren anzugeben. Die Abbildung , die bis dato erst eine Abbildung ist, kann dann auf den gesamten Tensorraum linear fortgesetzt werden, und zwar auf eindeutige Weise, und ist dadurch wohldefiniert.
- Mit anderen Worten: Die Restriktionsabbildung
- die eine lineare Abbildung auf die Menge der Erzeugenden einschränkt, ist ein Isomorphismus. Die Umkehrabbildung wird gerade durch die lineare Fortsetzung geliefert.
- Dabei mögen die beiden Notationen die Menge aller Abbildungen von einer Menge in eine Gruppe (hier: Vektorraum) bezeichnen, deren Werte an fast allen („“) Stellen verschwindet: .
- Anmerkung: Dieses Prinzip ist gerade diejenige universelle Eigenschaft, die gemäß der oben stehenden (oder der unten stehenden allgemeinen) Konstruktion des Tensorproduktraums als des freien abelschen Erzeugnisses einer Menge (für das Tensorprodukt wurde gewählt) über dem Körper mit sich bringt und allgemein so formuliert wird:
- Ist eine Menge und eine injektive Abbildung (Inklusion) in die Menge der Vektoren eines Vektorraums , so heißt das frei abelsche (lineare) Erzeugnis von über dem Körper , wenn es zu jeder Abbildung in die Menge von Vektoren eines anderen Vektorraumes mit für nur endlich viele (m.a.W.: zu jeder Abbildung ) eine eindeutig bestimmte lineare Abbildung mit von Vektorräumen gibt.
- Äquivalent ist die Forderung, dass folgende Abbildung (die Restriktion auf die Inklusion) ein Isomorphismus ist:
- In der Sprache der Kategorientheorie zeigt dies, dass der Vergissfunktor und der Funktor der freien Erzeugung zueinander adjungiert sind, wie hier für abelsche Gruppen erklärt wird.
- Spätestens an dieser Stelle wird deutlich: Wie ein Vektorraum durch die Menge seiner Basiselemente aufgespannt wird, so wird der Tensorproduktraum von Vektorräumen durch das kartesische Produkt ihrer jeweiligen Basen aufgespannt. Eine im Sinne der Kategorientheorie abstrakte Fassung dieses Gedankens wird im Yoneda-Lemma durch die Darstellbarkeit formuliert.
Universelle Eigenschaft
Damit wird deutlich, dass das auf diese Weise konstruierte Tensorprodukt
unter allen bilinearen Abbildungen
- in einen beliebigen Vektorraum
eine besondere Eigenschaft hat. Es ist nämlich universell in dem Sinne, dass jede bilineare Abbildung lediglich ein lineares Abbild des Tensorprodukts ist, soll heißen:
- Ist eine bilineare Abbildung in einen -Vektorraum , so kann aus durch Anhängen einer (sogar eindeutig bestimmten) linearen Abbildung gewonnen werden. Dazu muss sie – wie soeben beschrieben – nur auf den elementaren Tensoren durch definiert werden.
Es genügt also, das Tensorprodukt zu kennen, um alle bilinearen Abbildungen durch (uni)lineare Abbildung zu gewinnen. Somit birgt das Tensorprodukt alle Informationen für bilineare Abbildungen.
Die universelle Eigenschaft ist sogar geeignet, das Tensorprodukt hinreichend zu kennzeichnen: Dies geschieht durch die Universaldefinition, die koordinatenfrei, also basisunabhängig formuliert ist.
Beispiel: Kronecker-Produkt bei endlicher Dimension
Haben die Vektorräume und endliche Dimension über , sind also und endliche Mengen der Mächtigkeit bzw. , so ist der Tensorproduktraum offenbar mit dem -dimensionalen Raum zu identifizieren. Wie aber sieht diese Identifikation aus? Aus der obigen Definition geht hervor, dass der Tensorproduktraum nur bis auf Isomorphie bestimmt ist. Dies soll an diesem Beispiel illustriert werden, indem verschiedene Möglichkeiten der Identifikation vorgestellt werden. Dadurch soll verdeutlicht werden, dass es nicht genügt, unter dem Tensorprodukt lediglich das Produkt zweier Räume zu verstehen, sondern es muss zusätzlich angegeben werden, wie das Produkt zweier Vektoren definiert sein soll. Zwar ist es üblich, vom Tensorprodukt von Vektorräumen zu sprechen, aber es wäre besser, vom Tensorprodukt auf Vektorräumen zu sprechen, einer „Multiplikation“ von Vektoren, deren Ergebnis in einem neuen Raum liegt, eben dem Tensorproduktraum. Zu diesem Zweck sei der Einfachheit halber direkt in die Koordinatenräume übergangen: und .
- Identifikation von mit einem Vektorraum von Matrizen
- Die Zeilen werden mit dem Basisindex von nummeriert, die Spalten mit dem Basisindex von . Das Tensorprodukt zweier Vektoren und ist die Matrix : Ihr Eintrag an der Stelle ist das Produkt aus der -ten Koordinate von bezüglich und der -ten Koordinate von bezüglich .
- Das Tensorprodukt lautet in diesem Falle und liefert -Matrizen.
- Identifikation von mit dem üblichen Kronecker-Produkt
- Für zwei Vektoren
- und setze
- In der Sprache der Matrizen heißt diese Konstruktion auch dyadisches Produkt der Koordinatenvektoren und ordnet sich dem Kronecker-Produkt von Matrizen unter.
- Dies Produkt ist bilinear, jedoch nicht kommutativ, denn Vertauschung der Faktoren führt zu einer Permutation der Bild-Koordinaten.
- Identifikation von mit dem opponierten Kronecker-Produkt
- Ebenso gut ließe sich auch umgekehrt (vgl. Artikel Gegenring) definieren:
- Auch dieses Tensorprodukt ist bilinear.
Diese Beispiele sollen verdeutlichen, dass das Tensorprodukt von Vektoren nur bis auf Isomorphie bestimmt ist: Die obigen Tensorprodukte sind nicht gleich, aber isomorph, und dies, obwohl die Tensorprodukträume gleich sind.
Erweiterung der Skalare
Ist ein Vektorraum über und ein Erweiterungskörper von , so kann man das Tensorprodukt
bilden, indem man auch als -Vektorraum auffasst; dies wird durch symbolisiert. wird zu einem Vektorraum über , wenn man
setzt. Die Dimension von als -Vektorraum ist gleich der Dimension von als -Vektorraum: Ist eine -Basis von , so bildet die Menge
eine -Basis von .
Allgemeiner lässt sich aus der obigen konstruktiven Definition des Tensorprodukts ableiten, dass
Mit anderen Worten: Das Tensorprodukt ist einerseits die direkte Summe von Unterräumen und andererseits von Unterräumen , also unabhängig von der Wahl der Basen in und in .[2]
Tatsächlich löst sich die folgende Universaldefinition gänzlich vom Bezug auf die Basen, ist allerdings auch nicht mehr konstruktiv. Eine basisunabhängige (koordinatenfreie) Konstruktion zeigt der Artikel über das Tensorprodukt von Moduln, siehe auch den gleichnamigen Abschnitt in diesem Artikel.
Universaldefinition
Bisher wurde nicht auf die Frage eingegangen, auf welche Weise der mit bezeichnete Vektorraum ohne Bezugnahme auf vorgegebene Basen der beiden Vektorräume beschrieben werden kann. Dies soll nun anhand der Universaldefinition geschehen, die diesen Vektorraum allein anhand der universellen Eigenschaft eindeutig – bis auf Isomorphie – kennzeichnet. Allerdings war dies auch schon in der obigen Definition der Fall, da dort lediglich verlangt wurde, dass eine Basis haben solle, die umkehrbar eindeutig mit den Paaren von Basisvektoren aus bzw. identifizierbar sei. Tatsächlich darf man sich – zumindest aus mathematischer Sicht – das Tensorprodukt zweier Vektoren nicht als ein „durch Multiplikation errechenbares“ Produkt in einem unverrückbar festgelegten Produktraum vorstellen. Vielmehr kann es verschiedene „Realisierungen“ geben. Beachte: Selbst beim Aufbau des Zahlensystems, für die vertrauten natürlichen, rationalen, reellen und komplexen Zahlen, gibt es verschiedene, lediglich äquivalente Beschreibungsweisen. Immerhin stellt das Kronecker-Produkt ein konkretes (da koordinatengebundenes) Beispiel dar (siehe den zugehörigen gleichnamigen Abschnitt). Wesentlich und allen Realisierungen gemeinsam sind jedoch Eigenschaften, die das Tensorprodukt als solches eindeutig charakterisieren. Dies ist der Inhalt der folgenden universellen Eigenschaft des Tensorprodukts. Dabei müsste man also streng genommen nicht von dem Tensorprodukt sprechen, sondern von einem Tensorprodukt oder von einer Realisierung des Tensorprodukts. Das ist aber nicht üblich, stattdessen wird die Identifikation isomorpher Realisierungen stillschweigend unterstellt – ganz so, wie man es bei Zahlen schließlich auch tut.
Einige vorbereitende Festlegungen vorab: Es seien also und sowie und Vektorräume über dem Körper . Der Vektorraum der linearen Abbildungen von nach sei mit bezeichnet, und der Vektorraum der bilinearen Abbildungen werde mit bezeichnet.
Allgemein gilt nun: Ist eine bilineare Abbildung gegeben, so ist für jeden Vektorraum die Abbildung
ein Homomorphismus.
Zur Erklärung:
- Es ist leicht zu nachzuprüfen, dass für jede lineare Abbildung das Kompositum bilinear ist. Die obige Abbildung ist also wohldefiniert. Sie ist zudem ein Vektorraum-Homomorphismus (also eine lineare Abbildung).
Definition: Als Tensorprodukt der -Vektorräume und wird jeder -Vektorraum zusammen mit einer bilinearen Abbildung bezeichnet, der die folgende universelle Eigenschaft erfüllt:
- Jede bilineare Abbildung in einen -Vektorraum faktorisiert linear eindeutig über , das heißt:
- Es gibt eine eindeutig bestimmte lineare Abbildung gibt, sodass gilt: , das heißt:
- Für beliebige Paare von Vektoren gilt dann: .
- Man notiert dann und versteht darunter den – bis auf Isomorphie eindeutig bestimmten – Vektorraum .
- Die (zum Tensorprodukt gehörige) bilineare Abbildung wird als notiert. Es ist wichtig zu beachten, dass diese wesentlicher Bestandteil des Tensorproduktes ist: Einen Tensorproduktraum zu betrachten, ohne zu wissen, welche bilineare Abbildung als „Produkt“ in ihn führt, ist sinnlos.
Bemerkung: Gibt es eine bilineare Abbildung in einen Vektorraum mit dieser universellen Eigenschaft, so ist bis auf Isomorphie eindeutig bestimmt.
Zur Erklärung:
- Nutzt man nämlich die universelle Eigenschaft für gegenüber und ebenso – mit vertauschten Rollen – für gegenüber , so erhält man zwei Homomorphismen bzw. mit und . Also sind beide zueinander invers: . Daher sind zwei Realisierungen des Tensorproduktes zueinander isomorph.[3]
- Notabene: Hierbei ist wesentlich zu beachten, dass die Isomorphie sich nicht nur auf die beiden Räume und als Vektorräume bezieht: Vielmehr beziehen die beiden zueinander inversen Isomorphismen die jeweiligen bilinearen Abbildungen ein, indem sie auch sie aufeinander abbilden. Hieran wird deutlich, dass das Tensorprodukt zweier Vektorräume nicht lediglich als ein neuer Vektorraum verstanden werden darf. In Wahrheit bewegt sich das Tensorprodukt also nicht in der Kategorie der Vektorräume, sondern in der Kategorie der bilinearen Abbildungen . Darin bildet ein initiales oder Anfangsobjekt, weil jede bilineare Abbildung über die bilineare Abbildung eindeutig faktorisiert. Am zugehörigen Diagramm spiegelt sich diese Tatsache darin wider, dass es ein Dreieck ist: Beide bilinearen Abbildungen erscheinen darin, und es kommutiert: Es geht nicht allein um einen Isomorphismus , sondern um einen Isomorphismus, der mit den bilinearen Abbildungen verträglich ist. Aus diesen Gründen sollte man unter der Begrifflichkeit „Tensorprodukt“ nicht den Produktraum zu verstehen suchen, sondern eine universelle bilineare Abbildung in eine geeignete Realisierung. „Produkt“ steht also nicht für ein Produkt von Räumen, sondern für ein Produkt auf Räumen (in einen anderen Raum), für eine Multiplikation, eben eine bilineare Abbildung, die im Übrigen nicht kommutativ ist.
Vor dem Hintergrund der eingangs gemachten Anmerkung über die Abbildung lässt sich die Universaldefinition nun auch so formulieren:
Äquivalente Definition: Der Vektorraum und eine bilineare Abbildung werden als Tensorprodukt von und bezeichnet, wenn für jeden Vektorraum die Abbildung induziert vermöge bijektiv, mithin also ein Isomorphismus ist. Man schreibt dann auch und .
Zur Erklärung:
- Es bleibt lediglich noch nachzuweisen, dass die Bijektivität von mit der Aussage der universellen Eigenschaft äquivalent ist: Diese sichert nämlich gerade zu, dass es zu jeder bilinearen Abbildung eine lineare Abbildung gibt (Existenzaussage), sodass , und dass diese Abbildung zudem eindeutig bestimmt (Eindeutigkeitsaussage) ist. Die Existenzaussage ist mit der Surjektivität, die Eindeutigkeitsaussage mit der Injektivität von äquivalent. Also besagt die universelle Eigenschaft gerade, dass der Homomorphismus ein Isomorphismus ist.
- Hinweis: Zwar ist der Homomorphismus zunächst nur auf jedem elementaren Tensor durch festgelegt. Durch lineare Fortsetzung ist damit jedoch auf dem gesamten Tensorraum wohldefiniert, wie im Abschnitt über die Fortsetzbarkeit von Abbildungen auf elementaren Tensoren zu Homomorphismen auf dem Tensorraum erklärt wurde.
Wenn es also einen Vektorraum mit der universellen Eigenschaft gibt, so ist er – eben aufgrund der universellen Eigenschaft – nur bis auf Isomorphie eindeutig bestimmt. Allerdings lässt die Universaldefinition die Frage offen, ob es überhaupt einen Vektorraum mit diesen Eigenschaften gibt. Um also die Existenz eines solchen Vektorraumes sicherzustellen, muss entweder ein solcher Vektorraum konstruiert werden oder aber „zufällig“ ein solcher Vektorraum „gefunden“ werden. Einen Existenzbeweis durch Konstruktion führt (in einem allgemeineren Falle) der Artikel Tensorprodukt von Moduln aus: Dazu wird zunächst ein zu großer Vektorraum konstruiert, der anschließend nach einem Unterraum faktorisiert wird, sodass der Quotientenraum „erzwungenermaßen“ genau die gewünschten Eigenschaften hat.
Die Universaldefinition zeigt (nämlich für ) einen Weg zu einer Realisierung des Tensorproduktes auf: Dieser Gedanke wird im Abschnitt Natürliche Homomorphismen berührt und im Abschnitt Homomorphismen als Tensoren vertieft. Darin wird ein Vektorraum benannt, von dem sich (mit Hilfe der universellen Eigenschaft) recht leicht erkennen lässt, dass er die gewünschte universelle Eigenschaft des Tensorraums hat. Dieses Vorgehen gelingt allerdings nur für den Fall, dass oder endliche Dimension über ihrem Grundkörper haben, weil Eigenschaften des Dualraumes genutzt werden, die eben die endliche Dimension als Voraussetzung benötigen.
Der triviale eindimensionale Fall
Ein Seitenblick möge zeigen, wie der Fall das Tensorprodukt „trivialisiert“: Dabei zeigt sich, dass sich die Situation ganz analog zu den (uni)linearen Abbildungen aus der elementaren linearen Algebra verhält. Einzig bemerkenswert ist, dass die Kommutativität des Grundkörpers eine Rolle spielt, im Gegensatz zum linearen Fall.
Der Skalarkörper bildet über sich selbst in natürlicher Weise einen eindimensionalen Vektorraum. Für eine bilineare Abbildung und beliebige Körperelemente gilt
- NB: Man beachte, wie hierbei fast unbemerkt die Kommutativität des Körpers eingeht.
Also ist eine bilineare Abbildung bereits durch den Wert von festgelegt, und bis auf diesen Wert (als Faktor) ist sie mit der Körpermultiplikation identisch: Die Eigenschaften der Bilinearität gehen in die Distributivität der Multiplikation über, im Verbund mit der Assoziativität und der Kommutativität: .
Also ist in diesem Falle der Körper selbst mit dem Tensorprodukt identifizierbar: . Die universelle Eigenschaft bedeutet: Setzt man , so vermittelt das lineare Abbild der bilinearen Abbildung , wie es die universelle Eigenschaft fordert. Schließlich gilt ja .
Das Tensorprodukt zweier Skalare (aufgefasst als Vektoren) liefert also nichts Neues: Es ist bis auf den Skalarfaktor mit der Körpermultiplikation identisch, lässt sich also durch ein Monom beschreiben. Dieser Skalarfaktor darf allerdings nicht verschwinden: Wäre nämlich , so wäre die universelle Eigenschaft verletzt: Die einzige bilineare Abbildung, die lineares Abbild dieses „Null-Produktes“ ist, ist nämlich die triviale Nullabbildung. Die genaue Wahl des Skalarfaktors tut aber auch nichts zur Sache: Das Tensorprodukt ist ja nur bis auf Isomorphie festgelegt, und jede andere bilineare Abbildung unterscheidet sich um einen Linearfaktor. Es kann naheliegenderweise normiert werden.
Haben jedoch die beiden Vektorräume und mehr als eine Dimension (), so liegt das Tensorprodukt zweier Vektoren in einem Vektorraum, der erst konstruiert oder „gefunden“ werden muss, eben einer Realisierung des Tensorproduktraums. Das Tensorprodukt dreier Vektoren liegt in einem weiteren, davon verschiedenen Raum usw. usf. Die Tensoralgebra liefert den geeigneten Produktraum für Produkte mit beliebig (doch endlich) vielen Faktoren.
Mit anderen Worten: Unilineare Abbildungen zwischen Vektorräumen verallgemeinern lineare Abbildungen . Bilineare Abbildungen verallgemeinern die Körpermultiplikation , die quadratische Ordnung hat: .
Für mehr als zwei Faktoren gilt Entsprechendes.
Das Tensorprodukt als Bifunktor: Das Tensorprodukt linearer Abbildungen
Es seien zwei Vektorräume und mit je einer linearen Abbildung auf einen weiteren Vektorraum gegeben: und . Dann ist die Abbildung
bilinear. Nach der universellen Eigenschaft gibt es also eine eindeutig bestimmte lineare Abbildung , die auf den elementaren Tensoren gerade mit dem Tensorprodukt der Bildvektoren übereinstimmt:
- für jedes Paar
Die Abbildung kann also auf den elementaren Tensoren (oder gar auf den Basisvektoren allein) definiert und linear fortgesetzt werden. Wie sich aus der obigen Konstruktion durch lineare Fortsetzung einer auf den elementaren Tensoren definierten Abbildung ergibt, gilt: Die Konstruktion von ist von der Wahl der Basen unabhängig.
Für ergibt sich also eine wohldefinierte Abbildung
Sind weitere Vektorräume bzw. lineare Abbildungen und gegeben, und ist , so gilt darüber hinaus:
Dies zeigt, dass die Zuordnung in der Sprache der Kategorientheorie ein (kovarianter) Bifunktor auf der Kategorie der -Vektorräume ist.
Diese Zuordnung ist darüber hinaus bilinear über .[Anm 6]
Man notiert diesen Bifunktor häufig mit dem Zeichen für das Tensorprodukt: . Aus dem Zusammenhang muss deutlich werden, ob dabei die Zuordnung durch den Bifunktor oder aber ein Tensor gemeint ist.[4]
Allerdings ist diese Unterscheidung in der Regel unwesentlich, denn beide Deutungen können miteinander identifiziert werden, da aufgrund der universellen Eigenschaft eine Einbettung besteht:
Der Bifunktor : Es gibt einen natürlichen Monomorphismus , induziert durch die Festlegung . Dieser ist genau dann ein Isomorphismus, wenn oder endlichdimensional ist.[5][6]
Die Darstellungsmatrix oder Abbildungsmatrix der linearen Abbildung ist das Kronecker-Produkt der Darstellungsmatrizen von und bezogen auf die Basen von bzw. von , wenn in den Räumen bzw. die Basen bzw. (für bzw. ) zugrunde gelegt werden.
Vertauschbarkeit mit dem Koprodukt
Aus der Konstruktion geht hervor, dass das Tensorprodukt (als Bifunktor) mit dem Koprodukt (direkte Summe) vertauschbar ist, das heißt, für -Vektorräume bestehen folgende Isomorphismen:
folglich
und
Natürliche Homomorphismen
Wenn den Dualraum von bezeichnet, dann liefert die oben erwähnte Isomorphie für endlichdimensionale Vektorräume und für den Fall die Isomorphie:
Dabei wurde der Isomorphismus verwendet. Allgemein ist , definiert durch , ein Isomorphismus von Vektorräumen.
Setzt man hingegen , so erhält man die Isomorphie
die weiter unten erneut abgeleitet und mit bezeichnet wird. Auch diese Identifikation besteht jedoch nur für endlichdimensionale Vektorräume. Bei unendlicher Dimension sind es nur Monomorphismen.[7]
Neben dem Isomorphismus , den die universelle Eigenschaft liefert, erhält man durch Currying – unabhängig von Überlegungen zum Tensorprodukt – einen Isomorphismus
insgesamt also einen kanonischen Isomorphismus : Dieser besteht auch bei unendlichen Dimensionen.[7]
- Anmerkung: Die folgenden linearen Abbildungen jedoch, in deren Bezeichnung der griechische Buchstabe erscheint, sind daher Isomorphismen bei endlicher Dimension, bei unendlicher Dimension jedoch sind es lediglich Monomorphismen.
Zusammen mit der Universaldefinition erhält man auf diese Weise für die folgende Identifikation:
Nun besteht ein kanonischer Isomorphismus zwischen einem endlichdimensionalen Vektorraum und seinem Bidualraum:[Anm 7]
Nutzt man diese Tatsache, so kann man das Tensorprodukt von und also auch als den Dualraum des Vektorraums aller bilinearen Abbildungen realisieren, endliche Dimensionen vorausgesetzt:
In Worten: Der Dualraum des Raumes der bilinearen Abbildungen ist eine Realisierung des Tensorprodukts . Dabei gilt ja . So kann man als denjenigen Unterraum des Raums der Bilinearformen aus definieren, der von solchen der Gestalt aufgespannt wird, wobei und die Vektorräume bzw. durchlaufen.[8] Im Falle unendlichdimensionaler Vektorräume ist es ein echter Unterraum (siehe obige Verweise).
Setzt man hierbei , so erhält man als Sonderfall die eben bereits verwendete Tatsache zurück, dass der Bidualraum eines endlichdimensionalen Vektorraums mit diesem kanonisch identifiziert werden kann.
Wer sogar die nichtkanonische Identifikation vornimmt (etwa aufgrund eines auf definierten Skalarproduktes), gelangt sogar zur (leicht Verwirrung stiftenden) Identifikation , denn sie verschweigt die Beimischung eines weiteren willkürlichen Tensors (eben des Skalarprodukts als einer Bilinearform). Stattdessen sollte die kanonische Identifikation betrachtet werden. Dieser Homomorphismus und ähnliche Homomorphismen werden in den folgenden Unterabschnitten näher betrachtet.
Homomorphismen als Tensoren
Dieser Isomorphismus lässt sich (wie folgt) explizit auf den elementaren Tensoren angeben und wird linear auf allgemeine Tensoren fortgesetzt:
Ersetzt man nun durch seinen Dualraum und benutzt die natürliche Identifikation mit dem Bidualraum für einen Vektorraum endlicher Dimension, so erhält man einen Isomorphismus
der schon oben für den Fall erwähnt wurde. Er darf als der kanonische Homomorphismus gelten, während die anderen hier genannten sich als Varianten aus ihm ergeben und nur der Vollständigkeit halber erwähnt werden. Für den Fall, dass beide Vektorräume unendlichdimensional sind, ist nur ein natürlicher Monomorphismus.[9]
Ebenso lässt sich , falls von endlicher Dimension, durch seinen Dualraum ersetzen, und man erhält:
Wenn beide durch ihr Dual ersetzt werden, erhält man:
Für den Vektorraum von Homomorphismen lässt sich unter diesen Voraussetzungen explizit zeigen, dass er die für geforderte universelle Eigenschaft erfüllt, zusammen mit der bilinearen Abbildung . Auf diese Weise hat man für – auch ohne Konstruktion – eine konkrete Realisierung des Tensorproduktes gefunden, entsprechend natürlich für die anderen Beispiele.
Diese Realisierung liefert zudem ein greifbares Beispiel dafür, dass das Tensorprodukt auch für nicht kommutativ ist:
- Es ist unmittelbar abzulesen, dass die beiden Tensoren auf verschiedene Homomorphismen abbildet, sobald sie nur linear unabhängig sind. Ist jedoch , so gilt für die Bilder unter tatsächlich , ganz analog zu der schon zuvor bekannten Rechenregel für Tensoren .
Bringt man – dank der endlichen Dimensionen – den natürlichen Isomorphismus zusammen mit bzw. ins Spiel, so erhält man weitere Identifikationen.
Die Umkehrabbildung von – unter Voraussetzung endlicher Dimension von – wird folgendermaßen konstruiert:[10]
- Die Tatsache, dass für jede lineare Abbildung und jede Linearform das Kompositum linear ist, bedeutet, dass folgende Abbildung wohldefiniert und ihrerseits linear ist:
- Sie ist injektiv, weil die duale Paarung nicht ausgeartet ist, das heißt, weil für jedes ein existiert mit .
- Die Surjektivität folgt so: Ist eine Bilinearform, so ist für jedes (festgehaltene) die partielle Abbildung als ein Vektor des Bidualraumes zu verstehen, der jedoch (unter Verwendung von beim Ausrufezeichen) in kanonischer Weise mit selbst zu identifizieren ist. Setzt man nun , so erhält man eine lineare Abbildung mit , wie gewünscht.
- Diese Abbildung tauchte bereits oben als Abbildung auf, die durch bloßes Currying gewonnen wurde: Dafür ist lediglich durch zu ersetzen. Tatsächlich ist bereits durch Currying klar, dass eine Bilinearform als Homomorphismus zu verstehen ist, wenn man beim Gleichheitszeichen die Identifikation voraussetzen darf.
Homomorphismen aus lassen sich also als Bilinearformen interpretieren. Die Abbildungen und bzw. die Umkehrabbildung liefern im Falle Interpretationen der so genannten gemischten Tensoren als Endomorphismen auf ; weitere Einzelheiten siehe diesen Abschnitt.
Homomorphismen einfacher Tensoren
Im Lichte der Identifikation von Tensoren mit Homomorphismen wird deutlich, was einfache, reine oder elementare Tensoren sind: Sind sie von Null verschieden, so entsprechen ihnen die Homomorphismen vom Rang 1, also diejenigen Homomorphismen , für die eine der folgenden äquivalenten Bedingungen gilt:
- Es gibt einen Vektor mit .
- Für eine (und mithin jede) Darstellungsmatrix gilt: .
- Eine (und mithin jede) Darstellungsmatrix ist Matrizenprodukt (vgl. diesen Abschnitt, erstes Beispiel) aus einem Spaltenvektor und Zeilenvektor , also .
- Mit geeignet gewählten und gilt für die Einträge der Matrix: .
Welche Rolle Spalten- und Zeilenvektor spielen, wird im folgenden Abschnitt klar.
Die genannte Charakterisierung ist für die Quantenverschränkung von Interesse: Gemäß der dortigen mathematischen Beschreibung korrespondieren die einfachen Tensoren mit den separablen oder Produktzuständen. Verschränkt sind hingegen jene Zustände, die nicht separabel sind. Die Koordinatenmatrix verschränkter Zustände ist also durch gekennzeichnet.
Aus Sicht des Matrizenkalküls
Es lohnt sich zu beleuchten, wie sich die Abbildung im Matrizenkalkül widerspiegelt. Um das Ergebnis vorwegzunehmen: Die Abbildung besagt, dass eine Matrix
die einen Homomorphismus bezüglich zweier Basen und von bzw. darstellt, sich als Tensor auffassen lässt, indem man die Zeilen als Linearformen auf dem als Spaltenvektorraum notierten Vektorraum auffasst:
So liefert die Darstellungsmatrix in jeder Zeile für je einen eindimensionalen Unterraum eine Linearform , sodass sich in der direkten Summe über diese Unterräume die gesamte Abbildung ergibt. Denn genau dies geschieht bei der Multiplikation der Matrix mit einem Koordinatenvektor. Dabei wird die Notation mit hochgestellten Indizes verwendet, also anstelle von . Diese Notation wird gerne benutzt, wenn duale Beziehungen durch die Notationsweise verdeutlicht werden sollen. (Häufig findet dann die einsteinsche Summenkonvention Anwendung.) Hochgestellte Indizes sind also im Folgenden keine Potenzen.
Zur Erläuterung: Es seien also Vektorräume über dem Körper endlicher Dimension mit und ,
- eine Basis von und eine Basis von .
Dann sind diese Vektorräume die (inneren) direkten Summen ihrer eindimensionalen Unterräume bzw. :
Mit den kanonischen Projektionen (für ) gilt für jedes die Beziehung , also lässt sich als Summe
einzelner Abbildungen
darstellen, wobei stillschweigend die Einbettung vorgenommen wird, da nur in diesem gemeinsamen „Oberraum“ die Addition der ausgeführt werden kann. Definiert man nun für jedes eine Abbildung vermöge der Gleichung
so erhält man Linearformen , für die folgende Beziehung gilt:
Damit wird deutlich, wie die Abbildung zu verstehen ist: Die lineare Abbildung ist unter das Bild des Tensors :
Die Abbildung lässt sich also vermittels als Tensor auffassen, nämlich als Summe elementarer Tensoren , deren jeder die zugehörige Komponentenabbildung darstellt.
Mit der obigen darstellenden Matrix bestimmt man für einen Vektor mit Koordinatendarstellung gemäß Matrizenkalkül die Koordinatendarstellung des Bildvektors bekanntlich gemäß der Gleichung
Durch Vergleich mit der obigen Gleichung erkennt man, wie sich die Linearformen in der darstellenden Matrix wiederfinden: Es sind gerade die Zeilenvektoren. Für die Koeffizienten der Matrix gilt also:
Hierin drückt sich die bekannte Merkregel aus, dass in der -ten Spalte () der darstellenden Matrix der – auf die Basis des Bildraums bezogene – Koordinatenvektor der Bildes des Basisvektors steht.
- Anmerkung: Die dazu duale Merkregel besagt, dass in der -ten Zeile () der darstellenden Matrix der – auf die zur Basis des Definitionsraums duale Basis des Dualraums bezogene – Koordinatenvektor desjenigen Kovektors steht, der die Abbildung in der -ten Bildkomponente darstellt: .
Bezeichnet die zu gehörige duale Basis des Dualraums von ― definiert durch ( mit dem Kronecker-Delta) ―, so lässt sich die lineare Abbildung als Linearkombination schreiben:
Dies ist ja gerade die definierende Gleichung für die Darstellungsmatrix , welche die Abbildung bezüglich der Basen und darstellt.
Unter der Abbildung korrespondieren also und miteinander: Dies sind die einfachen Tensoren, aus denen die Abbildung zusammengesetzt ist.
Im Folgenden soll demonstriert werden, dass die Anwendung des Matrizenkalküls auf die Spaltenvektoren der zugehörigen Koordinatenräume bzw. implizit genau diese Zerlegung der linearen Abbildung in die Summe von Linearformen vornimmt. Dazu sei zunächst darauf hingewiesen, dass Skalare – aufgefasst als -Matrizen – an Spaltenvektoren von rechts, an Zeilenvektoren jedoch von links heran multipliziert werden müssen. Dies ist zwar bei kommutativen Körpern (wie hier) gleichgültig, doch ist für den Formalismus hilfreich, dies im Hinterkopf zu behalten. Nun kann man die Matrix in folgender – zunächst zweckfrei erscheinenden – Weise in eine Summe zerlegen, ganz der Zerlegung entsprechend:
Die Linearformen sind als Kovektoren (hier also Zeilenvektoren) im Koordinatenraum bezüglich der zu dualen Basis (definiert durch (Kronecker-Symbol)) dargestellt. Die links von diesen Linearformen stehenden Einheitsvektoren sind die Koordinatenvektoren der Basisvektoren und stehen für die Projektionen . Multipliziert man nun einen Koordinatenvektor für einen Vektor (von rechts) an die Matrix , beachtet Distributivität und Assoziativität des Matrizenkalküls, so ergibt sich:
Dabei stellen die links von den Skalarfaktoren stehenden Einheitsvektoren gerade die Koordinatenvektoren der Basisvektoren dar. Diese Beziehung ist also die Entsprechung für die obige Zerlegung der Abbildung in eine Summe elementarer Tensoren . Sie überträgt diese Zerlegung in die zugehörigen Koordinatenräume (bei gegebener Basiswahl) und zerlegt die Matrix in eine Summe von Linearformen. Die Abbildung wird im Matrizenkalkül also inhärent vollzogen.
Ähnlich lässt sich mit Hilfe der kanonischen Einbettungen eine (zu duale) Zerlegung angeben. Insgesamt ergibt sich die bekannte Tatsache, dass die Familie der linearen Abbildungen durch die Familie (lies: Matrix) von Koeffizienten gegeben ist: für . Dabei korrespondiert offenbar mit , also unter mit . Dies soll nun in kompakter Notationsweise gezeigt werden, die bei der Betrachtung des tensoriellen Transformationsverhaltens von Nutzen ist.
Die Darstellungsmatrix als Matrix der Tensorkoordinaten
Notiert man einen Vektor mit seinem Koordinatenvektor bezogen auf die – als Zeile notierte – geordnete Basis in der Form (und entsprechend für Vektoren in mit seiner Basis ), und geht man von der definierenden Gleichung
für die Darstellungsmatrix aus und notiert den Bildvektor mit seinen Koordinaten bezüglich der Basis entsprechend, so erhält man:
Zur Abkürzung setze man
und notiere die geordnete duale Basis als Spalte:
wobei .
Weiter setze man zur Abkürzung , sodass .
Dann lautet die definierende Gleichung für die Darstellungsmatrix von bezogen auf die Basen und schlicht und suggestiv
oder äquivalent:
Dabei liegen die einfachen Tensoren und können infolgedessen in diesem Raum aufsummiert werden. Sie korrespondieren mit .
Mit diesen Notationen gilt für eine Matrix und eine lineare Abbildung :
In Worten: Die Abbildung deutet die Einträge der Darstellungsmatrix als Koordinaten des zugehörigen Tensors: Die Darstellungsmatrix liefert die Koordinatendarstellung des Tensors bezogen auf die induzierte Basis .
Für die duale Abbildung gilt mit dieser Notation im Übrigen
oder – wenn man an die Stelle von das Tupel der geordneten dualen Basis einsetzt – in dualer Analogie zu obigen Beziehungen:
An der definierenden Gleichung für die Darstellungsmatrix sind erneut die beiden oben erwähnten Merkregeln ablesbar:
- Die Klammerung oder aber die Gleichung zeigen: In der -ten Spalte der darstellenden Matrix stehen die Koordinaten des Bildes des -ten Basisvektors , – und dazu dual:
- Die Klammerung bzw. die Gleichung zeigen gleichermaßen: In der -ten Zeile der darstellenden Matrix stehen die Koordinaten derjenigen Linearform , welche die