Multilineare Abbildung

Im mathematischen Teilgebiet d​er linearen Algebra u​nd verwandter Gebiete w​ird durch d​ie multilineare Abbildung d​er Begriff d​er linearen Abbildung verallgemeinert. Ein wichtiges Beispiel e​iner multilinearen Abbildung i​st die Determinante.

Definition

Ist ein kommutativer Ring mit Eins und sind und für Moduln über dem Ring , dann ist eine multilineare Abbildung eine auf dem Produktraum definierte Abbildung , welche bezüglich jedes ihrer Argumente eine lineare Abbildung ist. Genauer: Ist eine ganze Zahl, so hat eine -(multi)lineare Abbildung die Eigenschaft

,

wobei die partielle Abbildung

ist und die Menge der linearen Abbildungen von nach bezeichnet.

Falls , spricht man von einer -Multilinearform.

Die Menge aller -linearen Abbildungen von nach wird mit

bezeichnet; falls alle dieselben sind, notiert man auch

und schließlich .

Beispiele

  • Jede lineare Abbildung ist eine 1-lineare Abbildung.
  • Für ist die Nullabbildung die einzige lineare Abbildung, welche auch -linear ist. (Zum Beweis schreibe man , woraus und benutze, dass wegen der Linearität ist, sobald eines der Argumente ist.)
  • Jede bilineare Abbildung ist eine 2-lineare Abbildung.
  • Das Spatprodukt im ist eine 3-lineare Abbildung, d. h. .
  • Sämtliche gemeinhin üblichen Produkte sind 2-lineare Abbildungen: die Multiplikation in einem Körper (reelle, komplexe, rationale Zahlen) oder einem Ring (ganze Zahlen, Matrizen), aber auch das Vektor- oder Kreuzprodukt, Skalarprodukt.
  • Die Determinante in einem n-dimensionalen Vektorraum ist eine n-lineare Multilinearform.

Weitere Eigenschaften

Die symmetrische Gruppe der Permutationen von definiert eine Operation auf ,

das heißt durch Permutation der Argumente der -linearen Abbildung. (Man zeigt, dass indem man dies zunächst für zwei Transpositionen zeigt.)

Eine Abbildung heißt dann

  • symmetrisch, wenn für alle gilt.
  • antisymmetrisch, wenn für alle gilt, wobei das Vorzeichen der Permutation ist.
  • alternierend, wenn , sobald zwei der Argumente gleich sind.

Umgekehrt definiert m​an den Symmetrisierer

und d​en Antisymmetrisierer

,

welche eine beliebige multilineare Abbildung symmetrisch resp. antisymmetrisch "machen". (Manche Autoren dividieren durch einen Faktor , um diese Operatoren idempotent (das heißt zu Projektoren auf die entsprechenden Unterräume) zu machen, was jedoch in Körpern mit endlicher Charakteristik nicht immer möglich ist.)

Man zeigt einfach, dass eine alternierende Abbildung antisymmetrisch ist, während eine antisymmetrische Abbildung alternierend ist wenn , und ansonsten symmetrisch ist.

Zum Beispiel s​ind das Kreuzprodukt u​nd das Spatprodukt antisymmetrische Abbildungen.

Determinantenformen s​ind Beispiele für alternierende Multilinearformen (per Definition).

Tensoren

Multilineare Abbildungen werden benötigt, um das Tensorprodukt mittels der folgenden universellen Eigenschaft zu definieren, und sie werden damit zugleich klassifiziert: Für jede multilineare Abbildung gibt es genau einen Homomorphismus , so dass das folgende Diagramm kommutiert:

Universelle Eigenschaft des Tensorproduktes

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.