Verschobene Pareto-Verteilung
Die verschobene Pareto-Verteilung, auch Lomax-Verteilung genannt, ist eine in der mathematischen Statistik betrachtete Wahrscheinlichkeitsverteilung, die besonders zur Modellierung von Großschäden geeignet ist, insbesondere bei Industrie- und Rückversicherungen. Mathematisch handelt es sich hierbei um eine Pareto-Verteilung, deren Verteilungskurve um einen festen Parameterwert verschoben ist, woraus sich der Name dieser Verteilung ableitet.
Definition
Eine stetige Zufallsvariable genügt der verschobenen Pareto-Verteilung mit den Parametern und , wenn sie die Wahrscheinlichkeitsdichte
besitzt. Hierbei ist ein Skalenparameter der Verteilung.
Eigenschaften
Verteilungsfunktion
Die Verteilungsfunktion ist für gegeben durch
- .
Insbesondere gilt damit für die Überlebensfunktion: .
Charakteristische Funktion
Die charakteristische Funktion ist für die verschobene Pareto-Verteilung nicht in geschlossener Form angebbar.
Momenterzeugende Funktion
Die momenterzeugende Funktion ist für die verschobene Pareto-Verteilung nicht in geschlossener Form angebbar.
Literatur
- Klaus Jürgen Schröter: Verfahren zur Approximation der Gesamtschadenverteilung: Systematisierung, Techniken und Vergleiche. Band 1 von Karlsruher Reihe, Beiträge zur Versicherungswissenschaft, Verlag Versicherungswirtsch., 1995, ISBN 978-3-88487-471-4, S. 35.