Naumannit
Naumannit, veraltet auch als Selensilber, Selenbleisilber oder Selensilberglanz bekannt, ist ein relativ selten vorkommendes Mineral aus der Mineralklasse der „Sulfide und Sulfosalze“ mit der chemischen Formel Ag2Se. Naumannit ist damit chemisch gesehen ein Silber(I)-selenid, das strukturell mit den Sulfiden verwandt ist.
Naumannit | |
---|---|
Allgemeines und Klassifikation | |
Andere Namen | |
Chemische Formel | Ag2Se |
Mineralklasse (und ggf. Abteilung) |
Sulfide und Sulfosalze |
System-Nr. nach Strunz und nach Dana |
2.BA.30b (8. Auflage: II/B.05) 02.04.01.02 |
Ähnliche Minerale | Akanthit, Aguilarit, Argentit, Benleonardit, Cervelleit, Empressit, Hessit, Kurilit, Stiitzit, Tsnigriit[3] |
Kristallographische Daten | |
Kristallsystem | orthorhombisch |
Kristallklasse; Symbol | orthorhombisch-disphenoidisch; 222 |
Raumgruppe | P212121 (Nr. 19) |
Gitterparameter | a = 4,333 Å; b = 7,062 Å; c = 7,764 Å[4] |
Formeleinheiten | Z = 4[4] |
Zwillingsbildung | mimetischer Zwillingsbau stellenweise sehr deutlich[5] |
Physikalische Eigenschaften | |
Mohshärte | 2,5 |
Dichte (g/cm3) | 7,0 bis 8,0 (gemessen); 8,24 (berechnet) |
Spaltbarkeit | fehlt |
Bruch; Tenazität | hakig; schneid- und hämmerbar |
Farbe | grau- bis eisenschwarz, bräunlich anlaufend |
Strichfarbe | schwarz |
Transparenz | undurchsichtig (opak) |
Glanz | lichter, aber stark nachdunkelnder Metallglanz[5] |
Weitere Eigenschaften | |
Chemisches Verhalten | in verdünnter Salpetersäure sehr schwer, in rauchender Salpetersäure leicht löslich; mit Salzsäure starker Niederschlag von AgCl[6] |
Besondere Merkmale | Halbleiter[7], die Hochtemperaturform ist ein guter elektrischer Leiter[6] und ein Super-Ionenleiter[7] |
Naumannit kristallisiert im orthorhombischen Kristallsystem und entwickelt überwiegend körnige bis massige Aggregate, aber auch idiomorphe, pseudokubische, maximal 1 cm große Kristalle von grau- bis eisenschwarzer Farbe, die typischerweise bräunlich anlaufen.
Etymologie und Geschichte
Als Entdecker des Naumannits gilt der Berliner Mineraloge Gustav Rose, der das Mineral 1828 „unter den Stufen von Selenblei von Tilkerode am östlichen Harz, die sich in der Königlichen Mineraliensammlung in Berlin befinden“ gefunden hatte.[2] Erst im Jahre 1845 führte der Wiener Mineraloge Wilhelm von Haidinger zu Ehren des sächsischen Geologen und Kristallographen Carl Friedrich Naumann den Namen Naumannit ein.[8][9]
Nicht verwechselt werden darf das Mineral mit dem 1854 von Nikolai Iwanowitsch Kokscharow beschriebenen „Naumannit“, der sich als Niob-haltiger Rutil (Ilmenorutil) erwiesen hat.[10]
Klassifikation
In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Naumannit zur Mineralklasse der „Sulfide und Sulfosalze“ und dort zur Abteilung der „Sulfide, Selenide und Telluride mit Verhältnis Metall : S,Se,Te > 1:1“, wo er zusammen mit Aguilarit, Akanthit (>177 °C: Argentit), Benleonardit, Chenguodait (IMA2004-042a), Cervelleit, Empressit, Hessit, Stützit und Tsnigriit die „Argentit-Naumannit-Gruppe“ mit der System-Nr. II/B.05 bildete.
Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz'schen Mineralsystematik ordnet den Naumannit ebenfalls in die Klasse der „Sulfide und Sulfosalze“, dort allerdings in die Abteilung der „Metallsulfide, M : S > 1 : 1 (hauptsächlich 2 : 1)“ ein. Diese ist zudem weiter unterteilt nach den in der Verbindung vorherrschenden Metallen, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „mit Kupfer (Cu), Silber (Ag), Gold (Au)“ zu finden ist, wo es nur noch zusammen mit Aguilarit die unbenannte Gruppe 2.BA.30b bildet.
Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Naumannit in die Klasse der „Sulfide und Sulfosalze“ und dort in die Abteilung der „Sulfidminerale“ ein. Hier ist er zusammen mit Akanthit und Aguilarit in der „Akanthitgruppe“ mit der System-Nr. 02.04.01 innerhalb der Unterabteilung „Sulfide – einschließlich Seleniden und Telluriden – mit der Zusammensetzung Am Bn Xp, mit (m+n):p=2:1“ zu finden.
Kristallstruktur
Kristallstruktur von Naumannit | |||
Kristallsystem | orthorhombisch | ||
Raumgruppe | P212121 (Nr. 19) | ||
Gitterparameter (Elementarzelle) |
a = 4,333 Å; b = 7,062 Å;
c = 7,764 Å | ||
Zahl (Z) der Formeleinheiten |
Z = 4 |
Naumannit kristallisiert im orthorhombischen Kristallsystem in der Raumgruppe P212121 (Raumgruppen-Nr. 19) mit den Gitterparametern a = 4,333 Å; b = 7,062 Å; c = 7,764 Å sowie vier Formeleinheiten pro Elementarzelle.[4] Seit 1936 ist bekannt, dass Naumannit bei einer Temperatur von 127–143 °C in eine kubisch-hexakisoktaedrische Hochtemperaturform übergeht, die als α-Ag2Se bezeichnet wird. Die Raumgruppe dieser Hochtemperaturform ist Im3m (Raumgruppen-Nr. 229) und der Gitterparameter beträgt a = 5,006 Å bei 2 Formeleinheiten pro Elementarzelle.[11]
Die Struktur des Naumannits setzt sich aus Se-Schichten sowie aus zwei kristallographisch unabhängigen Ag-Atomen zusammen. Ein Ag-Atom befindet sich in unmittelbarer Nähe zur Se-Schicht und ist von vier Se-Atomen in einer gestörten tetrahedrischen Koordination umgeben, während das zweite Ag-Atom zwischen den Se-Schichten liegt und eine [3 + 1]-Koordination aufweist. Diese wird durch drei eng benachbarte, eine trigonale Fläche bildende Se-Atome sowie ein entfernt davon liegendes Se-Atom definiert.[12]
Eigenschaften
Morphologie
Naumannit entwickelt überwiegend körnige bis massige, aber auch dünnplattige und sogar dendritische Aggregate. Viel seltener sind idiomorphe, pseudokubische, maximal 1 cm große Kristalle.[4] Von der Typlokalität Tilkerode neben bis zentimetergroßen plattigen Aggregaten vor allem als tropfenförmiger Einschluss in Clausthalit sowie in größeren selbständigen, mitunter schön lamellar verzwillingten Massen.[13] In der im Silver City District in Idaho liegenden De Lamar Mine trat Naumannit in Form von xenomorphen, knolligen Aggregaten auf; aus den ungewöhnlich reichen „Silver Stopes“ wurde ein 475 g schweres Stück beschrieben.[14][15] Ferner neben undeutlichen auch in idiomorphen Kristallen. Würfelige, bei Temperaturen > 133 °C gebildete Kristalle wurden auf Gängen und in Drusen angetroffen, in Drusen fanden sich auch gut ausgebildete plattige Kristalle, die eine Kristallisation bei Temperaturen < 133 °C nahelegen.[15] Große Naumannit-Kristalle stammen aus der Midas Mine im Gold Circle District, Nevada[4], für die allerdings mehrfach gebänderte, an Naumannit und Elektrum reiche Erze mit kollomorpher Textur in Quarz und Adular typisch sind. Naumannit aus der bolivianischen Lagerstätte Virgen de Surumi entwickelt stark glänzenden Kriställchen mit geflossenen Oberflächen, die auf kristallisiertem Siderit sitzen.[16]
Durch Einwirkung von mit einem langsamen Stickstoff-Strom durchzogenen Selen-Dämpfen auf Silber in Rotglut lässt sich Naumannit künstlich erzeugen. Die anfangs entstehenden dünnen, bis 2 cm langen Nadeln wandeln sich bei weiterer Einwirkung in stahlgraue Rhombendodekaeder um.[6]
Physikalische und chemische Eigenschaften
Die Kristalle und Aggregate des Naumannits sind grau- bis eisenschwarz gefärbt und laufen typischerweise bräunlich an. Ihre Strichfarbe ist schwarz. Sie weisen einen lichten, aber stark nachdunkelnden Metallglanz auf. Die seit der Erstbeschreibung des Naumannits[2] beobachtete vollkommene Spaltbarkeit nach {001} ist tatsächlich eine Teilbarkeit, die aus dem Phasenübergang von der Hochtemperatur-Modifikation zum eigentlichen Naumannit resultiert.[17] Mit einer Mohshärte von 2,5 gehört Naumannit zu den weichen bis mittelharten Mineralen, die sich etwas leichter als das Referenzmineral Calcit mit einer Kupfermünze ritzen lassen.[4]
Im reflektierten Licht (Anschliff) ist Naumannit bläulichgrau und zeigt (in Luft) ein mäßig hohes Reflexionsverhalten, etwas heller als Tiemannit. In Öl ist das Reflexionsverhalten stark herabgesetzt; die Farbe ändert sich etwas nach braun. Der Reflexionspleochroismus in Luft ist schwer erkennbar, in Öl schwach, aber deutlich, zwischen bräunlichgrau und mattgrünlich graubraun (dunkler). Die Anisotropieeffekte bei + N sind hoch, die Farbeffekte (von blassgrau nach dunkelgrau) ziemlich lebhaft.[5] Naumannit ist vor dem Lötrohr auf Kohle leicht schmelzbar und gibt mit Soda ein Silberkorn. Im Kölbchen vor dem Lötrohr ebenfalls unter Bildung eines geringen Sublimats schmelzbar; im offenen Röhrchen setzen sich über einem Sublimat von rotem Selen kleine sternförmige Kristalle an, die aus der Röhre steigende Luft riecht stark nach Selen. In verdünnter Salpetersäure sehr schwer, in rauchender Salpetersäure leicht löslich; mit Salzsäure starker Niederschlag von Silberchlorid.[6]
Modifikationen und Varietäten
Die Varietät Selensilberblei besteht aus einem Gemenge von Clausthalit und Naumannit. Cacheutaït, benannt nach dem Cerro de Cacheuta bei Mendoza in Argentinien, bezeichnet ein Gemenge aus verschiedenen Seleniden, darunter hauptsächlich Clausthalit.[6]
Bildung und Fundorte
Naumannit bildet sich hydrothermal und findet sich vor allem auf geringmächtigen, schwefeldefizitären hydrothermalen Selenerzgängen. Begleitminerale sind andere Selenide wie Aguilarit, Bohdanowiczit, Clausthalit, Eskebornit, Eukairit, Tiemannit und Umangit, Sulfide und Sulfosalze wie Bornit, Chalkopyrit, Digenit, Mawsonit, Akanthit, Ag-reicher Tetraedrit, Proustit und Pyrargyrit sowie die Ag-Au-Legierung Elektrum, Goethit, Karbonate und verschiedene Silikate.[3] Mit Clausthalit kommen überaus zarte myrmekitische Verwachsungen vor.[5] Örtlich sind silber- oder selenhaltige Sekundärminerale wie Chlorargyrit, Chalkomenit, aber auch Malachit, charakteristisch.
Als eher seltene Mineralbildung kann Naumannit an verschiedenen Fundorten zum Teil zwar reichlich vorhanden sein, ist insgesamt aber wenig verbreitet. Bisher (Stand 2016) sind rund 170 Fundorte[18] bekannt. Typlokalität für den Naumannit ist der Eskaborner Stollen bei Tilkerode, Sachsen-Anhalt; das Mineral wurde auch im unweit gelegenen Grauwackesteinbruch Rieder bei Gernrode beobachtet. Weitere Fundorte in Deutschland sind u. a. die Grube „Roter Bär“, St. Andreasberg, die Gruben „St. Lorenz“ und „Charlotte“, Burgstätter Gangzug, Clausthal-Zellerfeld, und die Grube „Brummerjahn“ bei Zorge (alle im Harz, Niedersachsen). Ferner aus der Grube Clara im Rankach-Tal bei Oberwolfach, Schwarzwald, Baden-Württemberg, sowie aus den Gängen „Tiber“, „Brahma“, „Brahmaputra“, „Nelson“, „Rio Tinto“, „Rio Madeira“, „Ruhmvoll“, „Babelsberg“, „Oslo“, „Hohenstein“, „Sinaida“ und „Dürre Henne“ im Lagerstättenrevier Niederschlema-Alberoda (Sachsen)[19].
In Österreich kennt man Naumannit ausschließlich aus einem kleinen Steinbruch beim Judenbauer, nordwestlich Kirchschlag in der Buckligen Welt, Niederösterreich. Aus der Schweiz sind mit Weierfeld, Rheinfelden, Aargau, und Van d’en Bas, Trient-Tal, Kanton Wallis, zwei Fundorte bekannt. In Weierfeld kommt das Mineral in Gesteinsproben einer Red-Bed-Lagerstätte aus dem Perm vor. Aus Selenmineralisationen in Uraninit-Calcit-Gängen von Předbořice (Kovářov), aus Zálesí, Olmützer Region, Mähren und aus Moldava bei Teplice, Erzgebirge, Aussiger Region (alle in Tschechien). Aus dem „Rozalia“-Gang, Hodruša-Hámre bei Banská Štiavnica, Slowakei, und aus Săcărîmb (Nagyág) bei Deva, Rumänien. Aus den Gruben „St. Johannes“ und „Hellig Trefoldighet“ der Kongsberger Silbererz-Lagerstätte, Kongsberg, Buskerud, Norwegen. Aus der „Skrikerum Mine“, Valdemarsvik, Östergötland, und dem Glava-Kupferfeld (Yttre Rud Mines), Arvika, Värmland, beide Schweden. Weiterhin von Hope’s Nose, Torquay, Devon (England).
In den USA aus dem „Republic District“, Ferry County, und der „L-D Mine“, Wenatchee, Chelan County, beide Washington; aus der De Lamar Mine, Silver City District, Owyhee County, und aus der „4th of July Mine“, Yankee Fork, Custer County, Idaho; aus der „Midas Mine“ (Ken Snyder Mine) und der Lagerstätte Rex Grande bei Midas, beide im Gold Circle District in Elko County, Nevada. Aus Kanada von den Betty Claims nördlich Divide Lake, British Columbia, und dem weltweit tiefsten Buntmetall-Bergwerk, der Kidd Creek Mine bei Timmins, Ontario. In Mexiko aus den Gruben El Capulin, El Cubo San Juan de Rayas und Flores de María, alle bei Guanajuato, Municipio Guanajuato, Guanajuato. Aus der berühmten Silberlagerstätte Virgen de Surumi (Pacajake Mine) bei Colquechaca, Potosí, Bolivien. Aus der Mina Tumiñico, Sierra de Cacho, Provinz La Rioja, und aus dem einst selenreichsten Erzgang der Welt[20] am Cerro de Cacheuta bei Mendoza, beide Argentinien.
In Australien aus dem Wolumia-Goldfeld, New South Wales, und den Copper Hills, östliche Region Pilbara, Western Australia. Aus der Emperor Mine, Vatukoula, und dem Au-Ag-Te-Goldfeld Tuvatu, Viti Levu, Fidschi. In Japan aus den Au-Ag-Lagerstätten Hishikari und Kushikino, Präfektur Kagoshima, und der Grube Sanru auf Hokkaido. Aus der Goldlagerstätte Axi, Ili, Uigurisches Autonomes Gebiet Xinjiang, China.
Weitere Fundpunkte befinden sich z. B. in Argentinien, Australien, Bulgarien, China, Finnland, Deutschland, Frankreich, Grönland, Indonesien, Japan, Kanada, Mexiko, Polen, Russland, Spanien, Tschechien, Usbekistan und mehreren Bundesstaaten in den USA.[21]
Verwendung
Naumannit besteht zu etwa 73 % aus Silber und zu etwa 27 % aus Selen[4] und ist aufgrund dessen ein reiches Silbererz. Naumannit aus der „De Lamar Mine“ im Silver City District, Idaho, wurde jahrzehntelang als „Argentit“ gefördert und verhüttet und erst 1920 als Silberselenid erkannt.[14] In der im Gold Circle District in Nevada liegenden „Midas Mine“ ist Naumannit praktisch das einzige Silbererz. Naumannit gehört zu den Selenerzen, die 1961–1965 im Lagerstättenrevier Niederschlema-Alberoda in Sachsen selektiv abgebaut und verhüttet wurden.[19]
Ag2Se ist ein vielversprechendes Material für technologische Anwendungen auf verschiedenen Gebieten wie thermo-chromische Materialien für nichtlineare optische Geräte, ionensensitive Mehrfach-Elektroden, Infrarotsensoren, elektrochemische Speicherzellen, Speichergeräte für elektrochemische Potentiale und Magnetfeldfühler. Die Tieftemperaturmodifikation ist ein N-Typ-Halbleiter und wird als thermo-chromisches Material und als Fotosensibilisator in fotografischen Filmen benutzt, während die Hochtemperaturmodifikation ein Super-Ionenleiter ist und als fester Elektrolyt in lichtaktiv aufladbaren Batterien verwendet wird.[7] Nach dem Phasenübergang vergrößert sich die Ionenleitfähigkeit mit Werten um 2 S/cm auf das Zehntausendfache.[22] Die Halbleitereigenschaften des Material sind größenabhängig – Halbleiter-Nanokristalle finden Anwendung in Solarzellen, lichtemittierenden Dioden, Dünnschicht-Transistoren und bei der biologischen Bildverarbeitung.[7]
Siehe auch
Literatur
- Naumannite, In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America, 2001 (PDF 58 kB)
Weblinks
Einzelnachweise
- Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 77.
- Gustav Rose: Ueber ein neues Selenerz vom Harz. In: Annalen der Physik und Chemie. Band 90. Verlag Johann Ambrosius Barth, Leipzig 1828, S. 471–473 (online verfügbar in Poggendorffs Annalen der Physik und Chemie S. 471 ff. in der Google-Buchsuche).
- Bernhard Pracejus: The ore minerals under the microscope, An optical guide. 2. Auflage. Elsevier, Amsterdam 2015, ISBN 978-0-444-62725-4, S. 216 f.
- Naumannite, In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America, 2001 (PDF 57,8 kB)
- Paul Ramdohr: Die Erzmineralien und ihre Verwachsungen. 4. Auflage. Akademie-Verlag, Berlin 1975, S. 513–515.
- Carl Hintze: Handbuch der Mineralogie. Erster Band. Erste Abtheilung. 1. Auflage. Verlag Veit & Co., Leipzig 1904, S. 455.
- U. M. Chougale, S. H. Han, M. C. Rath, V. J. Fulari (2013): Synthesis, characterization and surface deformation study of nanocrystalline Ag2Se thin films. In: Materials Physics and Mechanics, Band 17, 47-58.
- Mindat - Naumannit
- Wilhelm von Haidinger: Handbuch der bestimmenden Mineralogie: enthaltend die Terminologie, Systematik, Nomenklatur und Charakteristik der Naturgeschichte des Mineralreiches. 2. Auflage. Braumüller & Seidel, Wien 1845, S. 565 (online verfügbar in Handbuch der bestimmenden Mineralogie S. 565 in der Google-Buchsuche).
- Mindat - Naumannit von Kokscharow
- M. Oliviera, R. K. McMullan, B. J. Wuensch (1988): Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2-xS, α-Cu2-xSe, and α-Ag2Se. In: Solid State Ionics, Band 28–30, 1332–1337.
- Jaemin Yu, Hoseop Yun: Reinvestigation of the low-temperature form of Ag2Se (naumannite) based on single-crystal data. In: Acta Crystallogr. Sect. E Struct. Rep. Online. 2011, 67(Pt 9), i45. doi:10.1107/S1600536811028534.
- Gerhard Tischendorf: Zur Genesis einiger Selenidvorkommen, insbesondere von Tilkerode im Harz (Freiberger Forschungshefte C69). 1. Auflage. Akademie-Verlag, Berlin 1959, S. 62–63.
- Earl V. Shannon (1920): An Occurrence of Naumannite in Idaho, In: American Journal Science, Band 50, 390–391.
- Robert E. Thomason (1983): Volcanic stratigraphy and epithermal mineralization of the DeLamar Silver Mine, Owyhee County, Idaho. Unpubl. M. Sc. Thesis, Oregon State University, 111 S.
- Hans Block, Friedrich Ahlfeld (1937): Die Selenerzlagerstätte Pacajake, Bolivia, In: Zeitschrift für praktische Geologie, Band 45, 9–14.
- J. W. Earley (1950): Description and synthesis of the selenide minerals, In: American Mineralogist, Band 35, S. 337–364 (PDF, 1850 kB).
- Mindat - Anzahl der Fundorte für Naumannit
- Axel Hiller, Werner Schuppan (2008): Geologie und Uranbergbau im Revier Schlema-Alberoda, In: Bergbau in Sachsen, Bergbaumonographie Band 14, 171 S. (Hrsg.: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden).
- Alfred Stelzner: Mineralogische Beobachtungen im Gebiet der argentinischen Republik. In: Tschermaks Mineralogische Mittheilungen. Band 1873. Verlag Wilhelm Braumüller, Wien 1873, S. 219–254 (online verfügbar in Tschermaks Mineralogische Mittheilungen S. 219–254 in der Google-Buchsuche).
- Fundortliste für Naumannit beim Mineralienatlas und bei Mindat
- F. Kirchhoff, J. M. Holender, M. J. Gillan (1996): Structure, dynamics, and electronic structure of liquid Ag-Se alloys investigated by ab initio simulation. In: Physical Review, Band B54, S. 190. doi:10.1103/PhysRevB.54.190.