Mersenne-Zahl
Eine Mersenne-Zahl ist eine Zahl der Form . Im Speziellen bezeichnet man mit die -te Mersenne-Zahl. Die ersten sieben Mersenne-Zahlen sind
Die Primzahlen unter den Mersenne-Zahlen werden Mersenne-Primzahlen genannt. Die ersten acht Mersenne-Primzahlen sind
Bei der Darstellung im Dualsystem zeigen sich Mersennezahlen als Einserkolonnen, d. h. Zahlen, die ausschließlich aus Einsen bestehen. Die -te Mersennezahl ist im Dualsystem eine Zahl mit Einsen (Beispiel: ). Mersenne-Zahlen zählen im Binären zu den Zahlenpalindromen, Mersenne-Primzahlen dementsprechend zu den Primzahlpalindromen.
P: Mp ist Mersenne-Zahl —: Mp ist die Composite-Mersenne-Zahl Cyan zeigt richtig Rosa zeigt falsch | ||||||||
p | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 |
---|---|---|---|---|---|---|---|---|
Mp | P | P | P | P | — | P | P | P |
p | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 |
Mp | — | — | P | — | — | — | — | — |
p | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 |
Mp | — | P | — | — | — | — | — | P |
p | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 |
Mp | — | — | — | P | — | — | P | — |
p | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
Mp | — | — | — | — | — | — | — | — |
p | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 |
Mp | — | — | — | — | — | — | — | — |
p | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 |
Mp | — | — | — | — | — | — | — | — |
Ihren Namen haben diese Primzahlen von dem französischen Mönch und Priester Marin Mersenne (1588–1648), der im Vorwort seiner Cogitata Physico-Mathematica[1] behauptete, dass für und die Zahl eine Primzahl sei.
Er irrte sich jedoch bei den Zahlen und und übersah die Mersenne-Primzahlen , und . Dass keine Primzahl ist, hat Édouard Lucas 1876 gezeigt, aber erst im Jahre 1903 konnte der Mathematiker Frank Nelson Cole die Primfaktoren dieser Zahl benennen. Um den Nachweis zu führen, dass keine Primzahl ist, wurde 1932 eine frühe Rechenmaschine verwendet. Bei der Zahl handelt es sich möglicherweise um einen Lesefehler seitens Mersenne aus seiner Korrespondenz mit Bernard Frénicle de Bessy und Pierre de Fermat, wobei er mit verwechselte.
Mersenne-Zahlen kommen auch beim Mersenne-Twister vor, einem Pseudozufallszahlengenerator.
Geschichte
Mersenne-Zahlen wurden zuerst in der Antike im Zusammenhang mit vollkommenen Zahlen untersucht. Eine natürliche Zahl wird vollkommen genannt, wenn sie gleich der Summe ihrer echten Teiler ist (Beispiel: ). Schon Euklid hatte gezeigt, dass die Zahl vollkommen ist, wenn eine Primzahl ist ( liefert die Zahl ). 2000 Jahre später wurde von Euler die Umkehrung für gerade vollkommene Zahlen gezeigt: jede gerade vollkommene Zahl ist von der Form , wobei eine Primzahl ist.
Ungerade vollkommene Zahlen sind bisher nicht gefunden worden, allerdings konnte ihre Existenz bis heute weder bewiesen noch widerlegt werden.
Die ersten vier vollkommenen Zahlen und waren schon in der Antike bekannt. Die Suche nach weiteren vollkommenen Zahlen motivierte die Suche nach weiteren Mersenne-Primzahlen. Die wichtigste dabei zu beachtende Eigenschaft ist die folgende:
- Ist eine zusammengesetzte Zahl, so ist auch eine zusammengesetzte Zahl. Dass von und von ohne Rest geteilt wird, kann mit Hilfe einer Polynomdivision gezeigt werden, falls und natürliche Zahlen ohne die Null sind.
Daraus folgt unmittelbar, dass der Exponent einer Mersenne-Primzahl selbst eine Primzahl ist. Durch diese Eigenschaft wird die Suche nach Mersenne-Primzahlen erleichtert, da nur noch Mersenne-Zahlen mit Primzahlexponent betrachtet werden müssen.
Der Umkehrschluss, dass prim ist, wenn prim ist, ist jedoch falsch, da beispielsweise keine Primzahl ist.
Mersenne-Primzahlen sind selten: bislang (Dezember 2018) sind erst 51 davon gefunden worden. Da es einen besonders effizienten Primzahltest für sie gibt, sind die größten bekannten Primzahlen Mersenne-Primzahlen.
Jahr | Ereignis |
---|---|
bis 1536 | Man glaubt, dass für alle Primzahlen p gilt, 2p–1 sei prim. |
1536 | Der deutsche Rechenmeister Ulrich Rieger (lat. Hudalrichus Regius) veröffentlicht in seinem Rechenbuch Utriusque Arithmetices epitome[2] als erster die fünfte vollkommene Zahl 212·(213–1) = 4096 · 8191 = 33550336 in gedruckter Form. Nachdem die Zahlen 511 und 2047 in seiner tabellarischen Übersicht nicht vorkommen, darf man annehmen, dass er 211–1 = 2047 = 23 · 89 als zusammengesetzt erkannt hat, obgleich er dies nicht extra erwähnt. |
1555 | Johann Scheubel veröffentlicht in seiner deutschen Übersetzung der Bücher VII-IX von Euklids Elementen die nächsten beiden vollkommenen Zahlen 216·(217–1) = 65536 · 131071 = 8589869056 und 218·(219–1) = 262144 · 524287 = 137438691328.[3] Die zweiten Faktoren sind die Mersenneschen Primzahlen M17 und M19. Allerdings hat er sowohl 211–1 = 2047 = 23 · 89, als auch 215–1 = 32767 = 7 · 31 · 151 nicht als zusammengesetzt erkannt, dafür aber 221–1 = 2097151 = 72 · 127 · 337. (Die Zerlegungen gibt er allerdings an dieser Stelle nicht an.) Er erhält in seinem Werk also fälschlicherweise neun, anstatt der korrekten sieben vollkommenen Zahlen. |
1603 | Pietro Cataldi (1548–1626) zeigt, dass 2p–1 prim ist für p = 17, 19 und vermutet dies korrekt für p = 31. Fälschlicherweise glaubt er es auch für p = 23, 29 und 37. |
1640 | Fermat widerlegt Cataldi für p = 23 und p = 37: 223–1 = 47 · 178481 und 237–1 = 223 · 616318177 sind keine Primzahlen. |
1644 | Mersenne behauptet, 2p–1 sei prim für p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 und 257, jedoch nicht prim für alle anderen natürlichen Zahlen kleiner als 257 (Vorwort zu seinem Werk Cogitata Physico-Mathematica). Wir wissen heute, dass diese Behauptung jedoch falsch ist, denn 2p–1 ist prim sowohl für p = 61 (Perwuschin, 1883) als auch für p = 89 (Powers, 1911) und p = 107 (Powers und Fauquembergue, 1914), zudem ist 267–1 zusammengesetzt (Lucas, 1876; Cole 1903). |
1738 | Euler widerlegt Cataldi für p = 29: 229-1 = 233 · 1103 · 2089. |
1750 | Euler bestätigt, dass Cataldi für p = 31 richtig lag: 231–1 ist prim. |
1870 | Édouard Lucas (1842–1891) formuliert die theoretischen Grundlagen für den Lucas-Lehmer-Test. |
1876 | Lucas bestätigt Mersenne: 2127–1 ist prim und widerspricht: 267-1 ist nicht prim, Faktoren bleiben unbekannt. |
1883 | Iwan Michejowitsch Pervuschin (1827–1900), ein russischer Mathematiker und orthodoxer Priester aus Perm/Russland, zeigt, dass 261–1 prim ist (Widerspruch zu Mersenne). |
1903 | Frank Nelson Cole benennt die Primfaktoren von 267-1 = 193707721 · 761838257287. |
1911 | Ralph Ernest Powers widerspricht Mersenne für p = 89: 2p–1 ist prim.[4] |
1914 | Powers widerspricht Mersenne auch für p = 107: 2p–1 ist prim. Fast gleichzeitig kommt auch E. Fauquembergue zu dieser Aussage.[5] |
1930 | Derrick Henry Lehmer (1905–1991) formuliert den Lucas-Lehmer Test. |
1932 | Lehmer zeigt: M(149) und M(257) sind nicht prim,[6] er rechnet dazu ein Jahr lang täglich zwei Stunden an einem Tischrechner.[7] |
1934 | Powers zeigt: M(241) ist nicht prim.[8] |
1944 | Horace S. Uhler zeigt: M(157) und M(167) sind nicht prim.[9] |
1945 | Uhler zeigt: M(229) ist nicht prim.[10] |
1947 | Uhler zeigt: M(199) ist nicht prim.[11] |
1947 | Der Bereich von 1 bis 257 ist nun vollständig überprüft. Man kennt jetzt die Mersenne-Primzahlen M(p) für p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 und 127.[12] |
1951 | Beginn des Einsatzes von Computern. Die Länge der größten bekannten Primzahl steigt bis 1952 von 39 Stellen auf 687 Dezimalstellen. |
1963 | Donald Gillies entdeckt M(11.213) mit 3.376 Stellen.[13] |
1996 | Joel Armengaud und George Woltman entdecken mit GIMPS M(1.398.269) mit 420.921 Stellen. |
1999 | Mit M(6.972.593), die 2.098.960 Stellen hat, kennt man am 1. Juni erstmals eine Primzahl mit mehr als 1 Million Stellen. |
2004 | Am 15. Mai wird nachgewiesen, dass M(24.036.583), eine Zahl mit 7.235.733 Stellen, prim ist. |
2005 | Am 18. Februar wird vom GIMPS-Projekt die 42. Mersenne-Primzahl entdeckt: M(25.964.951) hat 7.816.230 Stellen.
Ebenfalls vom GIMPS-Projekt wird am 15. Dezember die 43. Mersenne-Primzahl entdeckt: M(30.402.457) hat 9.152.052 Stellen. |
2006 | Am 4. September vermeldet das GIMPS-Projekt die Entdeckung der 44. Mersenne-Primzahl M(32.582.657) mit 9.808.358 Stellen. |
2008 | Am 16. September werden vom GIMPS-Projekt die 45. und die 46. bekannte Mersenne-Primzahl veröffentlicht: M(37.156.667) (entdeckt am 6. September) mit 11.185.272 Stellen und M(43.112.609) (entdeckt am 23. August) mit 12.978.189 Stellen. |
2009 | Die 47. bekannte Mersenne-Primzahl M(42.643.801) wird vom GIMPS-Projekt am 12. April entdeckt und am 12. Juni veröffentlicht. |
2013 | Die 48. bekannte Mersenne-Primzahl M(57.885.161) wird vom GIMPS-Projekt am 25. Januar entdeckt. |
2016 | Die 49. bekannte Mersenne-Primzahl M(74.207.281) wird vom GIMPS-Projekt am 7. Januar entdeckt.[14] |
2017 | Die 50. bekannte Mersenne-Primzahl M(77.232.917) wird vom GIMPS-Projekt am 26. Dezember entdeckt.[15] |
2018 | Die 51. bekannte Mersenne-Primzahl M(82.589.933) wird vom GIMPS-Projekt am 7. Dezember entdeckt.[16] |
Teilbarkeitseigenschaften der Mersenne-Zahlen
Im Lauf ihrer langen Geschichte sind viele Ergebnisse über Mersenne-Zahlen gefunden worden. Außer der schon erwähnten grundlegenden Teilbarkeitseigenschaft (teilt die Zahl , so ist Teiler von ) gibt es z. B. folgende Ergebnisse:
- Ist eine gerade Zahl und prim, so ist ein Teiler von , z. B. .
- Ist eine ungerade Primzahl und ein Primfaktor von Mn, so gilt und . Beispiel: und .
- Wenn eine Primzahl mit ist, dann gilt die folgende Äquivalenz: teilt die Mersenne-Zahl genau dann, wenn prim ist. Beispiel: ist prim und lässt einen Rest von bei Division durch . Da (als Ergebnis von ) prim ist, folgt: teilt die Mersenne-Zahl . Diese Aussage wurde von Leonhard Euler formuliert, aber erst später von Joseph-Louis Lagrange bewiesen (siehe auch Sophie-Germain-Primzahl).
- Ist eine Primzahl, dann ist keine Primzahl (nämlich durch teilbar). Mersenne-Primzahlen eignen sich also nicht als die kleinere Primzahl eines Primzahlzwillings.
- Ist mit , so ist das Produkt der Fermat-Zahlen bis . Beispiel: .
Die Suche nach Mersenne-Primzahlen
Für die Erzielung von Primzahl-Rekorden eignen sich Mersenne-Primzahlen in mehrfacher Hinsicht besonders gut, weil (a) zusammengesetzte Exponenten unberücksichtigt bleiben können, weil diese keine Primzahlen generieren, und deshalb eine Liste der Kandidaten für den Exponent leicht mit Primzahlgeneratoren erstellt werden kann, (b) aus dieser Liste wie oben beschrieben die Sophie-Germain-Primzahlen mit ausgesondert werden können (wie z. B. p = 11 → Teiler 23), (c) durch den funktionalen Zusammenhang die Größenordnung der Primzahl exponentiell – nämlich zur Basis zwei – mit dem Argument anwächst, man also schnell sehr große Zahlen erhält, (d) mit dem nachfolgend beschriebenen Lucas-Lehmer-Test ein einfacher und effektiver Primzahltest zur Verfügung steht.
Der Lucas-Lehmer-Test
Dieser Test ist ein speziell auf Mersenne-Zahlen zugeschnittener Primzahltest, der auf Arbeiten von Édouard Lucas aus der Zeit 1870–1876 beruht und im Jahr 1930 von Derrick Henry Lehmer ergänzt wurde.
Er funktioniert wie folgt:
- Sei ungerade und prim. Die Folge sei definiert durch .
- Dann gilt: ist genau dann eine Primzahl, wenn durch teilbar ist.
GIMPS: Die große Internet-Mersenne-Primzahl-Suche
Im Dezember 2018 waren 51 Mersenne-Primzahlen bekannt. Mit Computerhilfe wird nach weiteren Mersenne-Primzahlen gesucht. Da es sich um sehr große Zahlen handelt, sind die Berechnungen aufwendig: Die 51. Mersenne-Primzahl hat mehr als 24 Millionen Ziffern[17] im Dezimalsystem. Da derart große Zahlen nicht in klassischen Integer-Variablen gespeichert werden können, werden Felder aus mehreren Variablen gebildet und miteinander verrechnet. Dies führt zu langen Programmlaufzeiten.
GIMPS (engl.: Great Internet Mersenne Prime Search) versucht, weltweit möglichst viele Computer an den Berechnungen zu beteiligen. Die dafür nötige Software (Prime95) wurde von George Woltman und Scott Kurowski erstellt und ist für mehrere Computer-Plattformen (Windows, Linux …) verfügbar.
Liste aller bekannten Mersenne-Primzahlen
Nr. | p | Anzahl der Ziffern von M(p) | Jahr[18] | Entdecker[18] |
---|---|---|---|---|
1 | 2 | 1 | – | – |
2 | 3 | 1 | – | – |
3 | 5 | 2 | – | – |
4 | 7 | 3 | – | – |
5 | 13 | 4 | 1456 | – |
6 | 17 | 6 | 1555 | Johann Scheubel |
7 | 19 | 6 | 1555 | Johann Scheubel |
8 | 31 | 10 | 1772 | Leonhard Euler |
9 | 61 | 19 | 1883 | Iwan Perwuschin |
10 | 89 | 27 | 1911 | Ralph E. Powers |
11 | 107 | 33 | 1914 | Powers |
12 | 127 | 39 | 1876 | Édouard Lucas |
13 | 521 | 157 | 1952 | Raphael M. Robinson |
14 | 607 | 183 | 1952 | Robinson |
15 | 1279 | 386 | 1952 | Robinson |
16 | 2203 | 664 | 1952 | Robinson |
17 | 2281 | 687 | 1952 | Robinson |
18 | 3217 | 969 | 1957 | Hans Riesel |
19 | 4253 | 1281 | 1961 | Alexander Hurwitz |
20 | 4423 | 1332 | 1961 | Hurwitz |
21 | 9689 | 2917 | 1963 | Donald B. Gillies |
22 | 9941 | 2993 | 1963 | Gillies |
23 | 11.213 | 3376 | 1963 | Gillies |
24 | 19.937 | 6002 | 1971 | Bryant Tuckerman |
25 | 21.701 | 6533 | 1978 | Landon Curt Noll, Laura Nickel |
26 | 23.209 | 6987 | 1979 | Noll |
27 | 44.497 | 13.395 | 1979 | David Slowinski, Harry L. Nelson |
28 | 86.243 | 25.962 | 1982 | Slowinski |
29 | 110.503 | 33.265 | 1988 | Walter Colquitt, Luther Welsh Jr. |
30 | 132.049 | 39.751 | 1983 | Slowinski |
31 | 216.091 | 65.050 | 1985 | Slowinski |
32 | 756.839 | 227.832 | 1992 | Slowinski, Paul Gage |
33 | 859.433 | 258.716 | 1994 | Slowinski, Paul Gage |
34 | 1.257.787 | 378.632 | 1996 | Slowinski, Paul Gage |
35 | 1.398.269 | 420.921 | 1996 | GIMPS / Joel Armengaud |
36 | 2.976.221 | 895.932 | 1997 | GIMPS / Gordon Spence |
37 | 3.021.377 | 909.526 | 1998 | GIMPS / Roland Clarkson |
38 | 6.972.593 | 2.098.960 | 1999 | GIMPS / Nayan Hajratwala |
39 | 13.466.917 | 4.053.946 | 2001 | GIMPS / Michael Cameron |
40 | 20.996.011 | 6.320.430 | 2003 | GIMPS / Michael Shafer |
41 | 24.036.583 | 7.235.733 | 2004 | GIMPS / Josh Findley |
42 | 25.964.951 | 7.816.230 | 2005 | GIMPS / Martin Nowak |
43 | 30.402.457 | 9.152.052 | 2005 | GIMPS / Curtis Cooper, Steven Boone |
44 | 32.582.657 | 9.808.358 | 2006 | GIMPS / Curtis Cooper, Steven Boone |
45 | 37.156.667 | 11.185.272 | 2008 | GIMPS / Hans-Michael Elvenich |
46 | 42.643.801 | 12.837.064 | 2009 | GIMPS / Odd M. Strindmo |
47 | 43.112.609 | 12.978.189 | 2008 | GIMPS / Edson Smith |
48 | 57.885.161 | 17.425.170 | 2013 | GIMPS / Curtis Cooper |
49? | 74.207.281 | 22.338.618 | 2016 | GIMPS / Curtis Cooper[14] |
50? | 77.232.917 | 23.249.425 | 2017 | GIMPS / Jonathan Pace[15] |
51? | 82.589.933 | 24.862.048 | 2018 | GIMPS / Patrick Laroche[16] |
Mit Stand 6. Oktober 2021 ist nicht ausgeschlossen, dass es zwischen p = 57.885.161 und p = 82.589.933 noch weitere, bisher unentdeckte Mersenne-Primzahlen gibt; deshalb ist die Nummerierung ab Nr. 49 noch ungewiss (und mit einem „?“ versehen).
Offene Fragen
Wie so oft in der Zahlentheorie gibt es auch zu Mersenne-Zahlen ungelöste Probleme, die sehr einfach zu formulieren sind:
- Gibt es unendlich viele Mersenne-Primzahlen? Man vermutet aufgrund von plausiblen Heuristiken, dass es etwa viele Mersenne-Primzahlen gibt mit (für eine positive Konstante ). Sollte das zutreffen, so gäbe es tatsächlich unendlich viele Mersenne-Primzahlen.
- Genauer, ist die Vermutung, die H. W. Lenstra und C. Pomerance unabhängig voneinander aufstellten, richtig, dass es asymptotisch viele Mersenne-Primzahlen gibt, die kleiner oder gleich sind?[19]
- Umgekehrt: gibt es unendlich viele Mersenne-Zahlen mit prim, die keine Primzahlen sind? Auch hier vermutet man als Antwort ja. Dies würde zum Beispiel aus der Vermutung, dass es unendlich viele Sophie-Germain-Primzahlen gibt, die kongruent 3 modulo 4 sind, folgen.
- Sind alle Mersenne-Zahlen mit prim quadratfrei, d. h. kommt in der Primfaktorzerlegung der Zahl jeder Primfaktor genau einmal vor? Man konnte bisher noch nicht einmal beweisen, dass dies für unendlich viele Mersenne-Zahlen gilt.
- Gilt die „neue Mersenne-Vermutung“? Die Folge von Mersenne-Primzahlen, die Mersenne angab, lässt vermuten, dass er meinte, dass eine Mersenne-Zahl mit prim genau dann prim ist, wenn oder . Da diese Aussage nicht gilt, stellten P. Bateman, J. Selfridge und S. Wagstaff die neue Mersenne-Vermutung auf.
- Diese besagt, dass aus zwei der folgenden drei Aussagen bereits die dritte folgt:
- oder ,
- ist eine (Mersenne) Primzahl,
- ist eine Primzahl (man nennt sie Wagstaff-Primzahl).
- Diese besagt, dass aus zwei der folgenden drei Aussagen bereits die dritte folgt:
- Sind alle Glieder der Folge Primzahlen? Die stärkere Vermutung, dass alle Zahlen Primzahlen sind, für die eine Primzahl ist, konnte 1957 durch Raphael Robinson widerlegt werden. (z. B. ist nicht prim) Diese letzteren Zahlen nennt man doppelte Mersenne-Zahlen (OEIS, A077585). Bisher sind doppelte Mersenne-Primzahlen nur für bekannt (OEIS, A077586); für und wurden kleine Faktoren gefunden.[20] Ob es weitere oder sogar unendlich viele doppelte Mersenne-Primzahlen gibt, bleibt unbekannt.
Literatur
- Paulo Ribenboim: The new book of prime number records. 3rd edition. Springer, New York NY u. a. 1996, ISBN 0-387-94457-5 (Deutsch: Die Welt der Primzahlen. Geheimnisse und Rekorde. Auf den neuesten Stand gebracht von Wilfrid Keller. 2. vollständig überarbeitete und aktualisierte Auflage. Springer, Berlin u. a. 2011, ISBN 978-3-642-18078-1 (Springer-Lehrbuch)).
- Wie eine neue Mersenne Primzahl entdeckt wurde. In: taz, 11. März 2005; dpa-Hintergrundbericht
Weblinks
- Prime Mersenne Numbers – History, Theorems and Lists (englisch)
- Great Internet Mersenne Prime Search (GIMPS) und Aktueller Stand von GIMPS
- Steffen Haugks deutscher GIMPS-Blog in UK
- Mersenne Primzahlen Bibliografie mit Links auf die Original-Veröffentlichungen (englisch)
- Eric W. Weisstein: Mersenne-Primzahlen. In: MathWorld (englisch).
- mprint5 – schnelle Berechnung der Mersenne-Primzahlen durch den Finnen Mikko Tommila
- Wiki über Mersenne-Primzahlen und deren Suche (englisch)
Einzelnachweise
- Marin Mersenne: Cogitata Physico-Mathematica. In quibus tam naturae quàm artis effectus admirandi certissimis demonstrationibus explicantur. Paris: Bertier, 1644, Praefatio generalis, Nr. XIX.
- Hudalrichus Regius: Vtrivsque Arithmetices epitome ex uarijs authoribus concinnata. Straßburg: Bartholomäus Grüninger, 1536, S. VIIIv-IXv, Kap. 6 (De perfecto [Über die vollkommenen Zahlen]).
- Johann Scheubel: Das sibend, acht vnd neunt buch, des hochberümbten Mathematici Euclidis Megarensis, in welchen der operationen vnnd regulen aller gemainer rechnung, vrsach grund vnd fundament, angezaigt wirt, zu gefallen allen den, so die kunst der Rechnung liebhaben […] auß dem latein ins teütsch gebracht, vnnd mit gemainen exemplen also illustrirt vnnd an tag geben, das sy ein yeder gemainer Rechner leichtlich verstehn, vnnd ime nutz machen kan. Valentin Ottmar, Augsburg 1555, S. CCXXXI-CXXXIIII (Euklid IX, 36), hier S. CCXXXIII.
- Ralph Ernest Powers: The Tenth Perfect Number. In: American Mathematical Monthly, 18, 1911, Nr. 11, S. 195–197.
- Ralph Ernest Powers: A Mersenne prime. (PDF; 89 kB) In: Bulletin of the American Mathematical Society, 20, 1914, S. 531. Ralph Ernest Powers: Certain composite Mersenne’s numbers. In: Proceedings of the London Mathematical Society, 15, 1916, Nr. 2, S. xxii; E. Fauquembergue: Nombres de Mersenne. In: Sphinx-Œdipe, 9, 1914, S. 103–105; 15, 1920, S. 17–18. Chris K. Caldwell: M107: Fauquembergue or Powers?
- Derrick Henry Lehmer: Note on Mersenne Numbers. (PDF; 145 kB) In: Bulletin of the American Mathematical Society, 38, 1932, S. 383–384.
- pentagon.kappamuepsilon.org (Memento des Originals vom 22. Oktober 2015 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. (PDF)
- Ralph Ernest Powers: Note on a Mersenne Number. (PDF; 69 kB) In: Bulletin of the American Mathematical Society, 40, 1934, S. 883.
- Horace S. Uhler: A New Result Concerning a Mersenne Number. In: Mathematical Tables and other Aids to Computation 1 (1944), S. 333, 404. Vgl. Charles B. Barker: Proof that the Mersenne Number M167 is Composite. (PDF; 70 kB) In: Bulletin of the American Mathematical Society, 51, 1945, S. 389. H. S. Uhler: Note on the Mersenne Numbers M157 and M167. (PDF; 107 kB) In: Bulletin of the American Mathematical Society, 52, 1946, S. 178.
- Horace S. Uhler: A New Result Concerning a Mersenne Number. In: Mathematical Tables and other Aids to Computation 2 (1945), S. 94.
- Horace S. Uhler: On Mersenne’s Number M199 and Lucas’s Sequences. (PDF; 212 kB) In: Bulletin of the American Mathematical Society, 53, 1947, S. 163–164.
- Horace S. Uhler: On All of Mersenne’s Numbers Particularly M193. (PDF; 200 kB) In: Proceedings of the National Academy of Sciences, 34, 1948, S. 102–103. Horace S. Uhler: On Mersenne’s Number M227 and Cognate Data. (PDF; 320 kB) In: Bulletin of the American Mathematical Society, 54, 1948, Nr. 4, S. 378–380. Raymond Clare Archibald: Mersenne Numbers. In: Mathematical Tables and other Aids to Computation, 3, 1949, S. 398.
- Donald B. Gillies: Three New Mersenne Primes and a Statistical Theory. In: Mathematics of Computation, 18, 1964, S. 93–97. Bryant Tuckerman: Corrections. In: Mathematics of Computation, 31, 1977, S. 1051.
- Andreas Stiller: Neue größte bekannte Primzahl mit über 22 Millionen Stellen gefunden. In: heise online. Abgerufen am 20. Januar 2016.
- GIMPS: Discovery of the 50th known Mersenne Prime. Abgerufen am 3. Januar 2018.
- Mersenne Prime Discovery - 2^82589933-1 is Prime! 21. Dezember 2018, abgerufen am 22. Dezember 2018.
- 23,2 Millionen Stellen: Elektroingenieur entdeckt Rekordprimzahl
- List of known Mersenne prime numbers - PrimeNet. Abgerufen am 28. Dezember 2018.
- C. Pomerance: Recent developments in primality testing. In: Math. Intelligencer, 3:3, 1980/81, S. 97–105.
- Eric W. Weisstein: Double Mersenne Number. MathWorld (englisch)