Doppelte Mersenne-Zahl

In der Zahlentheorie ist eine doppelte Mersenne-Zahl eine Zahl der Form , wobei eine natürliche Zahl und die -te Mersenne-Zahl ist.

Beispiele

Die ersten fünf doppelten Mersenne-Zahlen s​ind die folgenden (Folge A077585 i​n OEIS):

Eigenschaften

Jede doppelte Mersenne-Zahl ist ist definitionsgemäß selbst Mersenne-Zahl, nämlich die -te.

Doppelte Mersenne-Primzahlen

Ist eine doppelte Mersenne-Zahl eine Primzahl, nennt man sie doppelte Mersenne-Primzahl.

Beispiele

Die ersten v​ier doppelten Mersenne-Primzahlen s​ind die folgenden (Folge A077586 i​n OEIS):

Mehr a​ls diese v​ier sind momentan n​icht bekannt.

Eigenschaften

Sei mit natürlichem . Dann gilt:

ist nur dann eine Primzahl, wenn auch die Mersenne-Zahl eine Primzahl ist.

Die Umkehrung gilt nicht: Wenn eine Primzahl ist, kann eine Primzahl sein, muss es aber nicht.

Tabelle

Die folgende Tabelle zeigt an, welche doppelten Mersenne-Zahlen mit prim sind, welche nicht und von welchen noch nicht einmal bekannt ist, ob es sich um Primzahlen handelt oder nicht. Dabei ist eine -stellige zusammengesetzte Zahl und ein -stelliger Restfaktor:

Anzahl der Stellen von Primzahl?Faktorisierung von
21prim
33prim
510prim
739prim
11617nicht prim
132.466nicht prim
1739.457nicht prim
19157.827nicht prim
232.525.223nicht prim
29161.614.249nicht prim
31646.456.993nicht prim
3741.373.247.568nicht primunbekannt
41661.971.961.084nicht primunbekannt
432.647.887.844.335nicht primunbekannt
4742.366.205.509.364nicht primunbekannt
532.711.437.152.599.296nicht primunbekannt
59173.531.977.766.354.911nicht primunbekannt
61694.127.911.065.419.642unbekanntkein Primfaktor [1][2]

Die doppelte Mersenne-Zahl ist viel zu groß, als dass man einen bekannten Primzahltest (vor allem den auf Mersenne-Zahlen zugeschnittenen Lucas-Lehmer-Test) auf sie anwenden könnte. Daher weiß man nicht einmal, ob sie zusammengesetzt ist oder nicht. Für alle anderen Primzahlen weiß man ebenfalls noch nicht, ob prim ist oder nicht. Es wird allerdings vermutet, dass es keine anderen doppelten Mersenne-Primzahlen gibt mit Ausnahme der ersten vier.[3][4]

Catalan-Mersenne-Zahlen

Die folgenden rekursiv definierten Zahlen n​ennt man Catalan-Mersenne-Zahlen (Folge A007013 i​n OEIS):

Schon von weiß man nicht, ob sie prim ist oder nicht, weil sie viel zu groß ist (viel größer als , welche für bekannte Primzahltests schon viel zu groß ist; sie hat 51.217.599.719.369.681.875.006.054.625.051.616.350 Stellen). Bekannt ist lediglich, dass sie keinen Primfaktor hat. Allerdings wird vermutet, dass diese Zahl zusammengesetzt ist. Wenn aber zusammengesetzt ist, wären alle weiteren mit ebenfalls zusammengesetzt, weil schon weiter oben gezeigt wurde, dass (und ist eine doppelte Mersenne-Zahl) nur dann eine Primzahl ist, wenn auch eine Primzahl ist.[5][6]

Der Mathematiker Eugène Charles Catalan hat sich erstmals mit diesen Zahlen beschäftigt, nachdem die Primalität von von Édouard Lucas im Jahr 1876 bewiesen wurde.[3][7] Er behauptete als erster, dass diese Zahlen bis zu einem gewissen oberen Limit allesamt prim sind und danach alle weiteren zusammengesetzt.

Eigenschaften

Die Menge d​er Catalan-Mersenne-Zahlen s​ind eine Teilmenge d​er Menge d​er doppelten Mersenne-Zahlen.[5] Mit anderen Worten: Jede Catalan-Mersenne-Zahl i​st auch gleichzeitig e​ine doppelte Mersenne-Zahl.

Trivia

In der Serie Futurama kommt die doppelte Mersenne-Zahl in der Folge Die Ära des Tentakels (2008) vor. Sie taucht kurz im Hintergrund auf einer Tafel in einem „elementaren Beweis der Goldbachschen Vermutung“ auf (welche in Wirklichkeit noch nicht bewiesen ist). In dieser Episode wird diese Zahl als martian prime bezeichnet.[5][8]

Einzelnachweise

  1. MM61 – A search for a factor of 2261-1-1
  2. MM61 – A search for a factor of 2261-1-1 – Listen
  3. Chris K. Caldwell: Mersenne Primes: History, Theorems and Lists – Conjectures and Unsolved Problems. Prime Pages, abgerufen am 25. Dezember 2018.
  4. I. J. Good: Conjectures concerning the Mersenne numbers. (PDF) In: Mathematics of Computation. 1955, S. 120–121, abgerufen am 25. Dezember 2018 (9).
  5. Eric W. Weisstein: Catalan-Mersenne Number. In: MathWorld (englisch).
  6. Landon Curt Noll: Landon Curt Noll’s prime pages. Abgerufen am 26. Dezember 2018.
  7. Eugène Charles Catalan: Frage 92. In: Nouvelle correspondance mathématique – Questions proposées. Imprimeur de l’academie royale de Belgique, 1878, S. 94–96 (französisch); Textarchiv – Internet Archive.
  8. Les mathématiques de Futurama – Grands théorèmes. Abgerufen am 26. Dezember 2018 (französisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.