Ramanujan-Primzahl

Ramanujan-Primzahlen sind Primzahlen, die einer Ungleichung nach S. Ramanujan genügen, die aus seiner Verallgemeinerung des Bertrandschen Postulats folgte, das Ramanujan dabei neu bewies.[1] Das Bertrandsche Postulat besagt, dass für alle Zahlen zwischen und mindestens eine Primzahl liegt. Ramanujan-Primzahlen sind als kleinste Zahlen definiert, so dass für alle zwischen und mindestens Primzahlen liegen. Dass es diese für jedes gibt, bewies Ramanujan. Der Name Ramanujan-Primzahl wurde 2005 von Jonathan Sondow eingeführt.

Sei die Primzahlfunktion, das heißt, ist die Anzahl der Primzahlen, die nicht größer als sind. Dann ist die te Ramanujan-Primzahl die kleinste Zahl , für die gilt:

für alle

Mit anderen Worten: Sie sind die kleinsten Zahlen , sodass für alle zwischen und mindestens Primzahlen liegen. Weil die Funktion nur an einer primen Stelle wachsen kann, muss eine Primzahl sein und es gilt:

Die ersten Ramanujan-Primzahlen sind:

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, … (Folge A104272 i​n OEIS)

Das Bertrandsche Postulat ist gerade der Fall (mit ).

Ramanujan bewies d​ie Existenz dieser Primzahlen, i​ndem er d​ie Ungleichung

für ableitete. Die rechte Seite wächst monoton gegen Unendlich für .

Eigenschaften

Es gilt für jedes

,

wobei den natürlichen Logarithmus bezeichnet, sowie

für ,

wobei die -te Primzahl ist.

Asymptotisch gilt

für

woraus m​it dem Primzahlsatz folgt:

Die obigen Resultate stammen von Jonathan Sondow[2] bis auf die Ungleichung , die Sondow vermutete und die Shanta Laishram bewies.

Beispiel

Die ersten Primzahlen lauten:[3]

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, … (Folge A000040 in OEIS)

Wir betrachten die beiden folgenden Eigenschaften (dabei ist die Anzahl der Primzahlen und die -te Ramanujan-Primzahl):

für alle

und untersuchen nun diese für die ersten :

Einzelnachweise

  1. Ramanujan: A proof of Bertrand’s postulate. In: Journal of the Indian Mathematical Society. 11 (1919), 181–182.
  2. J. Sondow: Ramanujan primes and Bertrand’s postulate. In: American Mathematical Monthly. Band 116, 2009, S. 630–635, Arxiv, pdf.
  3. The first 1000 and 10000 primes
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.