Reguläre Primzahl

In d​er Zahlentheorie heißt e​ine Primzahl regulär, w​enn sie bestimmte Zahlen n​icht teilt. Ihre bekannteste Anwendung stammt v​on Ernst Kummer, d​er 1850 bewies, d​ass der große Fermatsche Satz für Exponenten gilt, d​ie durch e​ine reguläre Primzahl teilbar sind.

Definition

Eine Primzahl heißt regulär, wenn sie keinen der Zähler (in vollständig gekürzter Darstellung) der Bernoulli-Zahlen teilt.

Kummer zeigte im Nachhinein, dass dies äquivalent zur Bedingung ist, dass nicht die Klassenzahl des -ten Kreisteilungskörpers teilt.

Eigenschaften und Wissenswertes

Eine schon lange offene Frage ist, ob es unendlich viele reguläre Primzahlen gibt. Seit Kummer steht die Vermutung im Raum, dass dies der Fall ist.[1] Man vermutet weiter, dass aller Primzahlen regulär sind.

Es i​st bekannt, d​ass es unendlich v​iele irreguläre Primzahlen g​ibt (Satz v​on K. L. Jensen 1915[2][3]).

Reguläre Primzahlen

Die ersten Glieder d​er Folge s​ind 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, … (Folge A007703 i​n OEIS).

Irreguläre Primzahlen

Die ersten Glieder d​er Folge s​ind 37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, … (Folge A000928 i​n OEIS).

Anwendung auf den großen Satz von Fermat: Der Satz von Kummer

Der Satz v​on Kummer besagt:[4][5]

Die Fermatsche Vermutung ist richtig, soweit der Exponent in der Fermatschen Gleichung eine reguläre Primzahl ist.

Ein möglicher Beweis dessen i​st folgender:

Angenommen ist eine reguläre Primzahl, und es gilt mit teilerfremden ganzen Zahlen , wobei keine der Zahlen durch teilbar sei (diese Bedingung wird "Fall I" genannt). Bezeichnet eine primitive -te Einheitswurzel, so lässt sich die linke Seite der Gleichung faktorisieren als

und man kann zeigen, dass diese Faktoren im Ganzheitsring paarweise teilerfremd sind. Da ihr Produkt eine -te Potenz ist, sind auch die einzelnen Faktoren -te Potenzen von Idealen, insbesondere also

An dieser Stelle kann nun die Regularität von verwendet werden: Die Ordnung von in der Idealklassengruppe kann nicht teilen, da sie Teiler der Klassenzahl sein muss. Jedoch ist das neutrale Element in der Idealklassengruppe, da Hauptideal ist. Also kann die Ordnung von nur 1 sein, selbst ist ein Hauptideal.

Das bedeutet: Es gibt eine Einheit und ein Element , so dass

gilt.

Diese Gleichung führt nun auf dem Weg über Kongruenzbetrachtungen modulo zum Widerspruch.

Der Satz v​on Kummer i​st ein Meilenstein a​uf dem Weg z​ur Lösung d​es Fermat-Problems. Durch d​ie dabei entwickelten Methoden h​at Kummer der späteren Entwicklung entscheidende Impulse gegeben.[6]

Literatur

Originalarbeiten

  • E. E. Kummer: Allgemeiner Beweis des Fermatschen Satzes, daß die Gleichung durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten , welche ungerade Primzahlen sind und in den Zählern der ersten ½ Bernoullischen Zahlen als Factoren nicht vorkommen. In: Journal für die reine und angewandte Mathematik (Crelles Journal). Band 40, 1850, S. 130–138 (digizeitschriften.de).
  • K. L. Jensen: Om talteoretiske Egenskaber ved de Bernoulliske Tal. In: Nyt Tidsskrift for Matematik. Afdeling B, Band 26, 1915, ZDB-ID 281026-8, S. 73–83.

Monographien

  • Peter Bundschuh: Einführung in die Zahlentheorie. 6., überarbeitete und aktualisierte Auflage. Springer, Berlin u. a. 2008, ISBN 978-3-540-76490-8.
  • Th. Skolem: Diophantische Gleichungen (= Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 5, 4, ISSN 0071-1136). Springer, Berlin 1938 (Nachdruck. Chelsea Publishing Company, New York NY 1950).

Einzelnachweise

  1. Bundschuh: S. 182.
  2. Jensen: Nyt Tidskr. f. Math. Band 26, S. 73 ff.
  3. Bundschuh: S. 182.
  4. Kummer: Crelles Journal. Band 40, S. 130 ff.
  5. Skolem: S. 83.
  6. Bundschuh: S. 182.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.