1,3-Butadien
1,3-Butadien [-butaˈdi̯eːn] (Vinylethylen) ist ein farbloses Gas mit mildem, aromatischem Geruch. Es ist ein ungesättigter Kohlenwasserstoff von großer industrieller Bedeutung. Daneben existiert noch das schwieriger herzustellende und industriell weit weniger bedeutende 1,2-Butadien.
Strukturformel | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | ||||||||||||||||
Name | 1,3-Butadien | |||||||||||||||
Andere Namen | ||||||||||||||||
Summenformel | C4H6 | |||||||||||||||
Kurzbeschreibung |
farbloses Gas mit aromatischem Geruch[2] | |||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||
| ||||||||||||||||
Eigenschaften | ||||||||||||||||
Molare Masse | 54,09 g·mol−1 | |||||||||||||||
Aggregatzustand |
gasförmig | |||||||||||||||
Dichte |
2,4982 kg·m−3 (0 °C)[2] | |||||||||||||||
Schmelzpunkt |
−108,92 °C[2] | |||||||||||||||
Siedepunkt |
−4,5 °C[2] | |||||||||||||||
Dampfdruck | ||||||||||||||||
Löslichkeit |
wenig in Wasser (1,03 g·l−1 bei 20 °C)[2] | |||||||||||||||
Brechungsindex |
1,4292 (−25 °C)[3] | |||||||||||||||
Sicherheitshinweise | ||||||||||||||||
| ||||||||||||||||
MAK |
| |||||||||||||||
Thermodynamische Eigenschaften | ||||||||||||||||
ΔHf0 |
110,0 kJ/mol[6] | |||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C |
2-Methyl-1,3-butadien oder Isopren, die Grundeinheit der Terpene, ist ein Derivat des Butadiens.
Herstellung
Butadien wird technisch in erheblichen Mengen durch Wasserstoffabspaltung aus gesättigten Kohlenwasserstoffen durch starkes Erhitzen (Cracken) hergestellt. Im Labor wird der Zerfall von 3-Sulfolen in siedendem Xylol in einer [4+1]-Cycloeliminierung zu 1,3-Butadien und Schwefeldioxid verwendet.[7]
Eigenschaften
Die Geruchsschwelle von Butadien liegt bei 4 mg/m³. Das Gas lässt sich leicht verflüssigen. Butadien ist schwerer als Luft und in Wasser – mit 1,03 g/l bei 20 °C – nur sehr gering löslich.
Butadien ist brennbar und polymerisiert leicht, weswegen ihm meist ein Stabilisator wie das 4-tert-Butylbrenzcatechin (TBC) beigefügt wird. Die Polymerisationswärme beträgt −73 kJ·mol−1 bzw. −1350 kJ·kg−1.[8]
Konjugierte Doppelbindungen beim 1,3-Butadien
Konjugierte π-Bindung |
Delokalisiertes Molekülorbital bei 1,3-Butadien |
Im planar gebauten Molekül sind alle vier Kohlenstoffatome sp2-hybridisiert. Die π-Orbitale überlappen sich ober- und unterhalb der Molekülebene. π-Bindungen entstehen durch Überlappung bei dem 1. und 2. Kohlenstoffatom sowie dem 3. und 4. Kohlenstoffatom. Zusätzlich können aber die Orbitale des 2. und des 3. Kohlenstoffatoms überlappen, so dass sich die π-Elektronen über das ganze Molekül ausbreiten können. Die Elektronen sind delokalisiert. Dadurch, dass sich Elektronen auf einem größeren Raum verteilen, wird im 1,3-Butadien eine erhöhte Stabilität beobachtet. Der Einfluss dieser konjugierten Doppelbindungen zeigt sich bei Additionsreaktionen von Butadien: Es können sich 1,2- und 1,4-Addukte bilden. Im letzten Fall bildet sich zwischen dem 2. und dem 3. Atom eine „neue“ Doppelbindung. Analog verlaufen Polyadditionsreaktionen von Butadien, die zu 1,2-Polybutadien oder 1,4-Polybutadien führen, siehe Butadien-Kautschuk. Das Verhältnis von 1,4- zu 1,2-Verknüpfung hängt stark von der Polymerisationsmethode und den Reaktionsbedingungen ab.
Verwendung
Mehr als 90 Prozent der Produktion von Butadien wird zu Synthesekautschuk weiterverarbeitet. Eine weitere Anwendung ist ABS, ein Terpolymerisat aus Acrylnitril, Butadien und Styrol. Außerdem wird aus Butadien und Blausäure in technischem Maßstab Adiponitril hergestellt, das ein Zwischenprodukt in der Produktion von Polyamiden ist. Aus Butadien werden Hydroxyl-terminierte Polybutadiene (HTPB) hergestellt, die als Treibstoff in Feststoffraketentriebwerken eingesetzt werden. Cyclobuten kann durch photochemische Cyclisierung von 1,3-Butadien erhalten werden:[9]
Diese Methode verläuft allerdings nur mit 30 %iger Ausbeute.[10]
Durch Reaktion mit Allylmagnesiumbromid und Diethylether, anschließender Hydrolyse mit Salzsäure und Neutralisation mit Natriumhydrogencarbonat kann ein Gemisch aus 1,6-Heptadien und 1,5-Heptadien gewonnen werden.[11]
Historisches
Das aus Butadien und dem Katalysator Natrium produzierte Polymer Buna (ButadienNatrium) hatte große Bedeutung für die deutsche Rüstungs- und Kriegswirtschaft vor und während des Zweiten Weltkrieges.
Sicherheitshinweise
Butadien ist hochentzündlich. Zwischen einem Luftvolumenanteil von 1,4 bis 16,3 Prozent bildet es explosive Gemische. Butadien wirkt narkotisierend. Beim Menschen wirkt 1,3-Butadien krebserregend.[12] Bei Industriearbeitern, die über längere Zeit einer Exposition mit 1,3-Butadien ausgesetzt waren, wurde eine erhöhte Anzahl an Krebserkrankungen festgestellt. Dabei handelte es sich vor allem um lympho-hämatopoetische Malignome (maligne Lymphome und Leukämien).[13]
1,3-Butadien wurde 2013 von der EU gemäß der Verordnung (EG) Nr. 1907/2006 (REACH) im Rahmen der Stoffbewertung in den fortlaufenden Aktionsplan der Gemeinschaft (CoRAP) aufgenommen. Hierbei werden die Auswirkungen des Stoffs auf die menschliche Gesundheit bzw. die Umwelt neu bewertet und ggf. Folgemaßnahmen eingeleitet. Ursächlich für die Aufnahme von 1,3-Butadien waren die Besorgnisse bezüglich der Einstufung als CMR-Substanz. Die Neubewertung fand ab 2014 statt und wurde von Deutschland durchgeführt. Anschließend wurde ein Abschlussbericht veröffentlicht.[14][15]
Berufskrankheit
Seit August 2017 können bestimmte Erkrankungen durch 1,3-Butadien in Deutschland auf Antrag als Berufskrankheit anerkannt werden (Nummer 1320 der Anlage 1 zur Berufskrankheiten-Verordnung – BKV). Das gilt auch für solche Erkrankungen, die vor diesem Termin eingetreten sind (§ 6 Abs. 1 BKV).
Literatur
- J. Grub, E. Löser: Butadiene. In: Ullmanns Enzyklopädie der Technischen Chemie. Wiley-VCH Verlag, Weinheim 2012; doi:10.1002/14356007.a04_431.pub2.
Einzelnachweise
- Eintrag zu BUTADIENE in der CosIng-Datenbank der EU-Kommission, abgerufen am 17. September 2021.
- Eintrag zu 1,3-Butadien in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. Januar 2021. (JavaScript erforderlich)
- David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Physical Constants of Organic Compounds, S. 3-72.
- Eintrag zu Buta-1,3-diene im Classification and Labelling Inventory der Europäischen Chemikalienagentur (ECHA), abgerufen am 1. Februar 2016. Hersteller bzw. Inverkehrbringer können die harmonisierte Einstufung und Kennzeichnung erweitern.
- Schweizerische Unfallversicherungsanstalt (Suva): Grenzwerte – Aktuelle MAK- und BAT-Werte (Suche nach 106-99-0 bzw. 1,3-Butadien), abgerufen am 21. September 2019.
- David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-25.
- Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart 1991, ISBN 3-519-03515-4, S. 131.
- Berufsgenossenschaft Rohstoffe und chemische Industrie, Merkblatt R 008 Polyreaktionen und polymerisationsfähige Systeme, Ausgabe 05/2015, ISBN 978-3-86825-069-5.
- Waldemar Adam, Thomas Oppenlaender, Gerald Zang: The 185-nm photochemistry of cyclobutene and bicyclo[1.1.0]butane. In: Journal of the American Chemical Society. 107, 1985, S. 3921–3924, doi:10.1021/ja00299a028.
- Albert Gossauer: Struktur und Reaktivität der Biomoleküle, Verlag Helvetica Chimica Acta, Zürich 2006, ISBN 978-3-906390-29-1, S. 143.
- Daniel Bellus, Chao-Jun Li, Teck-Peng Loh, Istvan Marko, Keiji Maruoka, Norikazu Miyoshi, Kunio Mochida, Ryoji Noyori, Masataka Oishi, Takashi Ooi, Susumu Saito, Makoto Shimizu, Tamotsu Takahashi, Sadao Tsuboi, Masahiko Yamaguchi, Hisashi Yamamoto, Akira Yanagisawa, Hajime Yasuda: Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be...Ba). Georg Thieme Verlag, 2014, ISBN 3-13-171771-8, S. 569 (eingeschränkte Vorschau in der Google-Buchsuche).
- Butadienkapitel (PDF; 829 kB) der IARC-Monographie 97 aus dem Jahr 2008, Link abgerufen am 14. Februar 2012.
- 1,3-BUTADIENE – Risk Assessment Report. (PDF; 4,5 MB) European Commission, Joint Research Centre, Institute for Health and Consumer Protection, European Chemicals Bureau, 2002.
- Europäische Chemikalienagentur (ECHA): Substance Evaluation Report und Conclusion Document.
- Community rolling action plan (CoRAP) der Europäischen Chemikalienagentur (ECHA): Buta-1,3-diene, abgerufen am 26. März 2019.