Cinnabarit
Cinnabarit (englisch cinnabar), vor allem im deutschen Sprachraum auch als Zinnober bekannt, ist ein häufig vorkommendes Mineral aus der Mineralklasse der „Sulfide und Sulfosalze“ mit der chemischen Zusammensetzung HgS und damit chemisch gesehen ein Quecksilbersulfid.
Cinnabarit | |
---|---|
Allgemeines und Klassifikation | |
Andere Namen | |
Chemische Formel | α-HgS[3] |
Mineralklasse (und ggf. Abteilung) |
Sulfide, Sulfosalze; Metall:Schwefel, Selen, Tellur = 1:1 |
System-Nr. nach Strunz und nach Dana |
2.CD.15a (8. Auflage: II/B.14) 02.08.14.01 |
Ähnliche Minerale | Cuprit, Krokoit, Proustit, Realgar, Rutil |
Kristallographische Daten | |
Kristallsystem | trigonal |
Kristallklasse; Symbol | trigonal-trapezoedrisch; 32[4] |
Raumgruppe | P3121 (Nr. 152) oder P3221 (Nr. 154)[3] |
Gitterparameter | a = 4,145 Å; c = 9,496 Å[3] |
Formeleinheiten | Z = 3[3] |
Häufige Kristallflächen | {0001}, {1011}[5] |
Zwillingsbildung | nach (0001) Berührungs- und Durchdringungszwillinge[5] |
Physikalische Eigenschaften | |
Mohshärte | 2 bis 2,5[6] |
Dichte (g/cm3) | gemessen: 8,176; berechnet: 8,20[6] |
Spaltbarkeit | vollkommen nach {1010}[6] |
Bruch; Tenazität | uneben bis schwach muschelig; spröde und splittrig,[7][8] geringfügig sektil[6] |
Farbe | zinnoberrot, braunrot, bleigrau |
Strichfarbe | scharlachrot |
Transparenz | durchscheinend bis undurchsichtig |
Glanz | Diamantglanz, Metallglanz, matt |
Magnetismus | Diamagnetismus |
Kristalloptik | |
Brechungsindizes | nω = 2,905 nε = 3,256[9] |
Doppelbrechung | δ = 0,351[9] |
Optischer Charakter | einachsig positiv |
Weitere Eigenschaften | |
Chemisches Verhalten | kann aus Quecksilber(II)salz-Lösungen durch Schwefelwasserstoff als Quecksilber(II)sulfid ausgefällt werden |
Cinnabarit kristallisiert im trigonalen Kristallsystem und entwickelt meist nur kleinere, aber dafür oft sehr flächenreiche Kristalle mit tafeligem bis prismatischem, rhomboedrischem oder dipyramidalem Habitus. Bekannt wurden bisher über 50 Kristallformen sowie Kristallzwillinge.[5] Häufig findet er sich auch in Form krustiger Überzüge oder körniger bis massiger Mineral-Aggregate. Das Mineral ist durchscheinend bis undurchsichtig und weist auf sichtbaren Kristallflächen einen diamant- bis metallähnlichen Glanz auf. Derbe Aggregate oder Krusten sind dagegen eher matt.
Die Farbe von Cinnabarit ist überwiegend von einem charakteristisch leuchtenden, leicht ins Gelbe tendierenden und auch als Farbe bekannten Zinnoberrot. Durch Fremdbeimengungen kann das Mineral aber auch eine braunrote bis bleigraue Farbe annehmen. Seine Strichfarbe ist jedoch immer ein kräftiges Rot, das als Scharlachrot beschrieben wird.[6]
Mit einer Mohshärte von 2 bis 2,5 gehört Cinnabarit zu den weichen Mineralen, die sich ähnlich wie das Referenzmineral Gips (Härte 2) gerade noch mit dem Fingernagel ritzen lassen. Cinnabarit kann farblich leicht mit Realgar verwechselt werden, mit dem er häufig vergesellschaftet vorkommt. Er unterscheidet sich allerdings durch seine viel höhere Dichte von diesem (Cinnabarit ≈ 8,2 g/cm3; Realgar ≈ 3,6 g/cm3). Weitere farblich ähnliche Minerale sind Cuprit, Krokoit, Proustit und Rutil.
Etymologie und Geschichte
Der Name „Cinnabarit“ nimmt Bezug auf die charakteristische rote Farbe des Minerals und leitet sich ab aus dem lateinischen cinnabaris bzw. dem griechischen κιννάβαρι[ς] kinnábari[s] für das Harz „Drachenblut“. Letzteres ist wahrscheinlich eine Übernahme aus dem Ostindischen, wo bestimmte Bäume ein rotes Harz abgeben.[10] Eine gemeinsame Quelle könnte mit dem persischen Namen des Zinnobers persisch شنگرف, DMG šangarf, mit seiner arabischen Bezeichnung زنجفرة / zinǧifra und auch mit seinem Namen auf Sanskrit, सुगरम् sugaram bestehen. Jedoch ist diese Quelle nicht mehr auffindbar.
Abraham Gottlob Werner (1749–1817) wählte für das Mineral in seiner Mineral-Systematik die Bezeichnung Zinnober und ordnete es als Quecksilber-Erz in die Klasse der Metalle ein.[11] Den bis heute gültigen Namen Cinnabarit prägte allerdings 1859 Carl Friedrich Naumann (1798–1873), der sich auf die ursprüngliche, lateinische Form bezieht. Hermann Hugo Alfred Francke (1860–)[12] schlug zwar 1890 die der griechischen Schreibweise entsprechende Bezeichnung Kinnabarit vor, diese konnte sich jedoch nicht durchsetzen; ebenso wenig wie der von August Breithaupt (1791–1873) gewählte Name Merkurblende nach dem römischen Gott Mercurius als Symbolträger für das Quecksilber.[2]
Die Herstellung von Zinnober im Trockenprozessverfahren aus den beiden Elementen Quecksilber und Schwefel wurde in China erfunden (daher der Trivialname „Chinesischrot“). Aufgrund der Tatsache, dass sich die frühesten Quellen zur Herstellung von Zinnober in Europa auf arabische Alchemisten aus dem 8. und 9. Jahrhundert beziehen, wird vermutet, dass diese die chinesische Erfindung nach Europa brachten. In Venedig wurde Zinnober ab dem 16. Jahrhundert synthetisch hergestellt. Im 17. Jahrhundert lag das Zentrum der europäischen Zinnoberproduktion im Trockenprozessverfahren schließlich in Amsterdam.[13]
1687 verbesserte Gottfried Schulz die Herstellung von Zinnober mit der Entwicklung des Nassprozessverfahrens. Er erhitzte „Aethiops mineralis“ bzw. die schwarze Modifikation in einer wässrigen Lösung von Ammonium- oder Kaliumsulfid. Es entstand helles, gelbrotes Zinnober, das zudem billiger herzustellen war.[13]
Zinnober-Bergwerke aus der Zeit der Badener Kultur (ca. 3500–2800 v. Chr.) sind unter anderem aus Šuplja Stena in Serbien nachgewiesen.
Klassifikation
Bereits in der veralteten 8. Auflage der Mineralsystematik nach Strunz gehörte der Cinnabarit zur Mineralklasse der „Sulfide und Sulfosalze“ und dort zur Abteilung der „Sulfide mit dem Stoffmengenverhältnis Metall : S = 1 : 1“ mit einer Kristallstruktur vom PbS-Typus (und Verwandte), wo er als einziges Mitglied die unbenannte Gruppe II/B.14 bildete.
Im zuletzt 2018 überarbeiteten und aktualisierten Lapis-Mineralienverzeichnis nach Stefan Weiß, das sich aus Rücksicht auf private Sammler und institutionelle Sammlungen noch nach dieser klassischen Systematik von Karl Hugo Strunz richtet, erhielt Cinnabarit die System- und Mineral-Nr. II/C.18-10, was in der „Lapis-Systematik“ der Abteilung „Sulfide mit dem Stoffmengenverhältnis Metall : S ≈ 1 : 1“ entspricht, wo das Mineral zusammen mit Hypercinnabarit eine eigene, aber unbenannte Gruppe bildet.[14]
Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Cinnabarit ebenfalls in die Abteilung der „Metallsulfide, M : S = 1 : 1 (und ähnliche)“ ein. Diese ist allerdings weiter unterteilt nach den in der Verbindung vorherrschenden Metallen, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „mit Zinn (Sn), Blei (Pb), Quecksilber (Hg) usw. “ zu finden ist, wo es als einziges Mitglied die unbenannte Gruppe 2.CD.15a bildet.
Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Cinnabarit in die Klasse der „Sulfide und Sulfosalze“ und dort in die Abteilung der „Sulfidminerale“ ein. Hier ist er als einziges Mitglied in der unbenannten Gruppe 02.08.14 innerhalb der Unterabteilung „Sulfide – einschließlich Seleniden und Telluriden – mit der Zusammensetzung AmBnXp, mit (m+n):p=1:1“ zu finden.
Chemismus
Im Allgemeinen ist Cinnabarit sehr stoffrein und besteht entsprechend im Wesentlichen aus Quecksilbersulfid (HgS) mit einem Anteil von 86,2 Gew.-% Quecksilber (Hg) und 13,8 Gew.-% Schwefel (S). In der Natur enthält Cinnabarit allerdings oft verschiedene mechanische Verunreinigungen wie beispielsweise organische Substanzen.[7]
Kristallstruktur
Cinnabarit kristallisiert trigonal in der Raumgruppe P3121 (Raumgruppen-Nr. 152) oder P3221 (Nr. 154) mit den Gitterparametern a = 4,15 Å und c = 3,26 Å sowie drei Formeleinheiten pro Elementarzelle.[3]
Die Kristallstruktur von Cinnabarit besteht aus Spiralketten entlang der c-Achse mit je zweifach koordinierten Quecksilber- und Schwefelionen (Hg[2]S[2]). Die Bindungen zu den benachbarten Ketten erzeugen eine trigonal deformierte Galenit-Struktur Hg[2+4]S[2+4].[15]
Kristallstruktur von Cinnabarit |
|
Farbtabelle: __ Hg __ S |
Eigenschaften
Cinnabarit weist eine auffällig hohe Doppelbrechung (δ = 0,351) auf, die etwa doppelt so hoch ist wie die des dafür bekannten Calcits (Doppelspat, δ = 0,154 bis 0,174). Zudem zeigt er eine sehr starke, den Quarz um das 15fache übertreffende[8], zirkulare Polarisation.
Cinnabaritkristalle zeigen eine vollkommene Spaltbarkeit nach {1010} und brechen mit unebenen bis schwach muschelförmig aussehenden Bruchflächen. Auch wenn das Mineral mit einer Mohshärte von 2 bis 2,5 noch zu den weichen Mineralen mit einer gewissen Zähigkeit – Cinnabarit ist geringfügig mit dem Messer schneidbar[6] – zählt, reagiert es beim Ritzen dennoch spröde und splittrig.[7][8]
Vor dem Lötrohr sublimiert Cinnabarit sehr leicht (ab 200 °C) und mit Soda im Glührohr erhitzt, setzt sich reines Quecksilber ab. Gegenüber Säuren und Laugen ist Cinnabarit allerdings sehr beständig, nur in Königswasser und konzentrierten Alkalisulfid-Lösungen löst er sich auf.[7]
Modifikationen und Varietäten
Cinnabarit ist eine von drei Modifikationen des Quecksilbersulfids (HgS). Die beiden anderen sind der kubisch kristallisierende Metacinnabarit und der hexagonal kristallisierende Hypercinnabarit.
Als Stahlerz wird eine bläuliche Varietät mit metallischem Glanz bezeichnet.[16]
Bildung und Fundorte
Cinnabarit bildet sich hydrothermal hauptsächlich in Bruchzonen um vulkanische Schlote und an heißen Quellen. Begleitminerale sind unter anderem Stibnit, Arsenopyrit, Calcit, Chalcedon, Dolomit, Fluorit, Markasit, Pyrit, Quarz, Quecksilber und Realgar.
Als häufige Mineralbildung ist Cinnabarit an vielen Fundorten anzutreffen, wobei bisher über 2600 Fundorte (Stand: 2019)[17] als bekannt gelten. Zu den wichtigsten Lagerstätten gehören allerdings der Monte Amiata in Italien, Idrija in Slowenien, Almadén in Spanien, Nikitovka (Oblast Donezk) in der Ukraine und Fargʻona (auch Ferghana) in Usbekistan.[7]
Bekannt aufgrund außergewöhnlicher Cinnabaritfunde ist vor allem China, wo an zahlreichen Fundstellen in Hunan, Guizhou und anderen Provinzen gut entwickelte Kristalle von bis zu sieben Zentimetern Größe zutage traten.[18]
In Deutschland fand sich das Mineral an vielen Stellen im Schwarzwald in Baden-Württemberg, bei Wölsendorf im bayerischen Landkreis Schwandorf, an mehreren Stellen in Hessen und Niedersachsen, im Sauerland und Siegerland in Nordrhein-Westfalen, an vielen Orten in Rheinland-Pfalz sowie an einigen Stellen im Saarland, in Sachsen-Anhalt, Sachsen und Thüringen.
In Österreich trat Cinnabarit bisher vor allem in Kärnten, Salzburg, der Steiermark und Tirol auf.
In der Schweiz konnte das Mineral bisher nur an zwei Stellen im Schams im Kanton Graubünden und an mehreren Stellen im Kanton Wallis gefunden werden.
Weitere Fundorte liegen unter anderem in Afghanistan, Australien, Bolivien, Chile, Frankreich, Japan, Kanada, Kirgisistan, Mexiko, Russland, Simbabwe, der Slowakei, Tschechien, Ungarn, im Vereinigten Königreich (Großbritannien) und in vielen Bundesstaaten der USA.[19]
Synthetische Herstellung
Das Quecksilbersulfid kann chemisch aus Quecksilber(II)salz-Lösungen durch Einleiten von Schwefelwasserstoff als Quecksilber(II)sulfid ausgefällt werden. Dabei fällt zunächst das metastabile, schwarze, kubische Sulfid (Metacinnabarit) aus. Dieses geht bei Kontakt mit Ammoniumpolysulfidlösung im Verlauf einiger Tage in die schwerer lösliche, hexagonale rote Modifikation über.
Verwendung
Als Rohstoff
Cinnabarit ist mit einem Metall-Gehalt von 87 Prozent das wichtigste und häufigste Quecksilber-Mineral, allerdings sinkt die wirtschaftliche Bedeutung seit Jahren und damit gehen auch die Produktionsmengen weltweit zurück. So betrug die weltweite Quecksilberproduktion 1971 noch über 10000 t, sank jedoch bereits 1975 auf rund 9600 t, wobei die UdSSR zu der Zeit mit einem Produktionsanteil von 25 % Marktführer war.[8] 2010 betrug die weltweite Quecksilberproduktion nur noch 1960 t.[20]
Als Pigment
Historische Anwendung fand Cinnabarit/Zinnober als rotes Pigment, dem „Zinnoberrot“. Es wird spätestens seit dem Natufien (12000–9500 bzw. 9000 v. Chr.) als Farbstoff eingesetzt, wie ein bemalter Schädel aus Kfar HaHoresh belegt.[21] In der Vinča-Kultur (5400–4600/4550 v. Chr.) wurde das Mineral auch zur Keramikdekoration eingesetzt.
Das enthaltene Quecksilber wurde nach Reduktion des Quecksilbersulfids als Material für Spiegel verwendet. Als Pigment wurde das Mineral seit dem Altertum in der Wand-, Tafel- und Buchmalerei eingesetzt.
Zinnober wurde seit der Antike bis zum 20. Jahrhundert in der Malerei verwendet. Ein schönes Beispiel ist das Gemälde von Masaccio, wo die Robe des heiligen Hieronymus mit Zinnober, diejenige des heiligen Johannes der Täufer mit Krapplack gemalt wurde.
Zinnoberrot hat eine gute Deckkraft, kann sich aber bei starker Beleuchtung dunkel färben.[22][23] Als Malerfarbe kann man Zinnober auch unter folgenden Bezeichnungen finden: Bergzinnober, Cinnabar, Mercurblende, Minium, Quecksilbersulfidrot, Rotes Schwefelquecksilber, Chinesischrot und Vermillion.
Weitere Verwendungen
Als Schmuckstein ist Cinnabarit trotz seiner ansprechenden Farbe aufgrund seiner geringen Mohshärte und hohen Spaltneigung für die Schmuckindustrie ohne Interesse, zumal er meist auch nur kleine Kristalle bildet. Für Sammler von seltenen Schmucksteinen wird Cinnabarit aber dennoch gelegentlich in geschliffener Form angeboten.[24]
Siehe auch
Literatur
- Hans Jürgen Rösler: Lehrbuch der Mineralogie. 4. durchgesehene und erweiterte Auflage. Deutscher Verlag für Grundstoffindustrie (VEB), Leipzig 1987, ISBN 3-342-00288-3, S. 307–309.
- Helmut Schröcke, Karl-Ludwig Weiner: Mineralogie. Ein Lehrbuch auf systematischer Grundlage. de Gruyter, Berlin; New York 1981, ISBN 3-11-006823-0, S. 216–223.
- Friedrich Klockmann: Klockmanns Lehrbuch der Mineralogie. Hrsg.: Paul Ramdohr, Hugo Strunz. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 443–444 (Erstausgabe: 1891).
- Felicitas und Thomas Brachert: Zinnober. In: Maltechnik-Restauro. Band 86, Nr. 3, 1980, S. 145–158.
Weblinks
- Cinnabarit. In: Mineralienatlas Lexikon. Stefan Schorn u. a., abgerufen am 31. Oktober 2020.
- Thomas Seilnacht: Zinnober. In: seilnacht.com. Seilnacht – Naturwissenschaften unterrichten, 20. Juni 2018, abgerufen am 15. März 2019.
- David Barthelmy: Cinnabar Mineral Data. In: webmineral.com. Abgerufen am 10. März 2019 (englisch).
- Cinnabar search results. In: rruff.info. Database of Raman spectroscopy, X-ray diffraction and chemistry of minerals (RRUFF), abgerufen am 10. März 2019.
- American-Mineralogist-Crystal-Structure-Database – Cinnabar. In: rruff.geo.arizona.edu. Abgerufen am 10. März 2019.
- Vermilion – Cinnabar. In: colourlex.com. Colourlex, abgerufen am 10. März 2019.
Einzelnachweise
- H. Hugo A. Francke: Ueber die mineralogische Nomenclatur: eine ausführliche Erörterung der für die Bildung wissenschaftlicher Mineralnamen in Betracht kommenden Grundsaetze und Regeln. R. Friedländer & Sohn, Berlin 1890, S. 80 (eingeschränkte Vorschau in der Google-Buchsuche).
- Hans Lüschen: Die Namen der Steine. Das Mineralreich im Spiegel der Sprache. 2. Auflage. Ott Verlag, Thun 1979, ISBN 3-7225-6265-1, S. 348.
- Patrick Auvray, Françoise Genet: Affinement de la structure cristalline du cinabre α-HgS. In: Bulletin de la Société Française de Minéralogie et de Cristallographie. Band 96, 1973, S. 218–219 (französisch, online verfügbar bei rruff.info [PDF; 143 kB; abgerufen am 10. März 2019]).
- David Barthelmy: Cinnabar Mineral Data. In: webmineral.com. Abgerufen am 10. März 2019 (englisch).
- Helmut Schröcke, Karl-Ludwig Weiner: Mineralogie. Ein Lehrbuch auf systematischer Grundlage. de Gruyter, Berlin; New York 1981, ISBN 3-11-006823-0, S. 216.
- Cinnabar. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (englisch, handbookofmineralogy.org [PDF; 59 kB; abgerufen am 10. März 2019]).
- Hans Jürgen Rösler: Lehrbuch der Mineralogie. 4. durchgesehene und erweiterte Auflage. Deutscher Verlag für Grundstoffindustrie (VEB), Leipzig 1987, ISBN 3-342-00288-3, S. 307–308.
- Friedrich Klockmann: Klockmanns Lehrbuch der Mineralogie. Hrsg.: Paul Ramdohr, Hugo Strunz. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 444 (Erstausgabe: 1891).
- Cinnabar. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 10. März 2019 (englisch).
- Wolfgang Pfeifer (Hrsg.): Etymologisches Wörterbuch des Deutschen. Akademie Verlag, Berlin 2010, ISBN 978-3-941960-03-9, S. 1615.
- Mineralsystem des Herrn Inspektor Werners mit dessen Erlaubnis herausgegeben von C. A. S. Hoffmann. In: C. A. S. Hoffmann (Hrsg.): Bergmannisches Journal. Band 1, 1789, S. 381 (online verfügbar bei rruff.info [PDF; 2,0 MB; abgerufen am 10. März 2019]).
- Wendell E. Wilson: Hugo Francke (1860–). In: mineralogicalrecord.com. Mineralogical Record, abgerufen am 10. März 2019.
- Zinnober synth., Vermilion. (PDF 31 kB) In: kremer-pigmente.com. Kremer Pigmente, 25. September 2015, abgerufen am 10. März 2019.
- Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. Stand 03/2018. 7., vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2018, ISBN 978-3-921656-83-9.
- Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 92 (englisch).
- Helmut Schröcke, Karl-Ludwig Weiner: Mineralogie. Ein Lehrbuch auf systematischer Grundlage. de Gruyter, Berlin; New York 1981, ISBN 3-11-006823-0, S. 217.
- Localities for Cinnabar. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 10. März 2019 (englisch).
- Petr Korbel, Milan Novák: Mineralien-Enzyklopädie (= Dörfler Natur). Edition Dörfler im Nebel-Verlag, Eggolsheim 2002, ISBN 978-3-89555-076-8, S. 37.
- Fundortliste für Cinnabarit beim Mineralienatlas und bei Mindat, abgerufen am 31. Oktober 2020
- Martin Bertau, Armin Müller, Peter Fröhlich, Michael Katzberg, Karl Heinz Büchel, Hans-Heinrich Moretto, Dietmar Werner: Industrielle Anorganische Chemie. 4., vollständig überarbeitete und aktualisierte Auflage. Wiley-VCH Verlag, Weinheim 2013, ISBN 978-3-527-33019-5 (eingeschränkte Vorschau in der Google-Buchsuche).
- Adrian Nigel Goring-Morris, Anna Belfer-Cohen: Different strokes for different folks: Near Eastern Neolithic mortuary practices in Perspective. In: Ian Hodder (Hrsg.): Religion at Work in a Neolithic Society. Cambridge University Press, Cambridge 2014, S. 47, doi:10.1017/CBO9781107239043.004 (englisch, online verfügbar bei academia.edu [abgerufen am 15. März 2019]).
- W. Anaf, K. Janssens, K. de Wael: Formation of Metallic Mercury During Photodegradation/Photodarkening of α-HgS: Electrochemical Evidence. In: Angewandte Chemie. Band 125, Nr. 48, 2013, S. 12800–12803, doi:10.1002/ange.201303977.
- Maria Spring, Rachel Grout: The Blackening of Vermilion: An Analytical Study of the Process in Paintings. In: National Gallery Technical Bulletin. Band 23, 2002, S. 50–61 (online verfügbar bei nationalgallery.org.uk [PDF; 8,1 MB; abgerufen am 10. März 2019]).
- Walter Schumann: Edelsteine und Schmucksteine. Alle Arten und Varietäten. 1900 Einzelstücke. 16., überarbeitete Auflage. BLV Verlag, München 2014, ISBN 978-3-8354-1171-5, S. 230.