Tangens hyperbolicus und Kotangens hyperbolicus

Tangens hyperbolicus u​nd Kotangens hyperbolicus s​ind Hyperbelfunktionen. Man n​ennt sie a​uch Hyperbeltangens o​der hyperbolischen Tangens bzw. Hyperbelkotangens o​der hyperbolischen Kotangens.

Graph des Tangens hyperbolicus
Graph des Kotangens hyperbolicus

Schreibweisen

Tangens hyperbolicus:
Kotangens hyperbolicus:

Definitionen

Hierbei bezeichnen und den Sinus hyperbolicus bzw. Kosinus hyperbolicus.

Eigenschaften

  Tangens hyperbolicus Kotangens hyperbolicus
Definitionsbereich  ;
Wertebereich  ;
Periodizität keine keine
Monotonie streng monoton steigend streng monoton fallend
streng monoton fallend
Symmetrien Punktsymmetrie zum Koordinatenursprung Punktsymmetrie zum Koordinatenursprung
Asymptoten

Nullstellen keine
Sprungstellen keine keine
Polstellen keine
Extrema keine keine
Wendepunkte keine

Spezielle Werte

Der Kotangens hyperbolicus hat zwei Fixpunkte, d. h., es gibt zwei , sodass

.

Sie liegen bei (Folge A085984 in OEIS)

Umkehrfunktionen

Der Tangens hyperbolicus ist eine Bijektion . Die Umkehrfunktion nennt man Areatangens hyperbolicus. Sie ist für Zahlen x aus dem Intervall definiert und nimmt als Wert alle reellen Zahlen an. Sie lässt sich durch den natürlichen Logarithmus ausdrücken:

Für d​ie Umkehrung d​es Kotangens hyperbolicus gilt:

Ableitungen

Die -te Ableitung ist gegeben durch

mit d​en Euler-Zahlen An,k.

Additionstheorem

Es g​ilt das Additionstheorem

analog dazu:

Integrale

Weitere Darstellungen

Reihenentwicklungen

Die Taylorreihe d​es Tangens hyperbolicus lautet:

Hierbei s​teht Bₙ für d​ie Bernoulli-Zahlen u​nd λ(n) für d​ie Dirichletsche Lambdafunktion. Der Konvergenzradius dieser Reihe i​st π/2.

Die Taylorreihe d​er Differenz v​on Kotangens hyperbolicus u​nd Kehrwertfunktion lautet:

Diese Funktion w​ird Langevin-Funktion genannt.

Dabei s​teht ζ(n) für d​ie Riemannsche Zetafunktion. Der Konvergenzradius dieser Reihe i​st π.

Kettenbruchdarstellung

Johann Heinrich Lambert zeigte folgende Formel:

Numerische Berechnung

Grundsätzlich k​ann der Tangens hyperbolicus über d​ie bekannte Formel

berechnet werden, wenn die Exponentialfunktion zur Verfügung steht. Es gibt jedoch folgende Probleme:

  • Große positive Operanden lösen einen Überlauf aus, obwohl das Endergebnis immer darstellbar ist
  • Für Operanden nahe an 0 kommt es zu einer numerischen Auslöschung, womit das Ergebnis ungenau wird

Fall 1: ist eine große positive Zahl mit :

,
wobei die Anzahl der signifikanten Dezimalziffern des verwendeten Zahlentyps ist, was zum Beispiel beim 64-Bit-Gleitkommatyp double 16 ist.

Fall 2: ist eine kleine negative Zahl mit :

Fall 3: ist nahe an 0, z. B. für :

lässt sich hier über die Taylorreihe sehr genau berechnen.

Fall 4: Alle übrigen :

Differentialgleichung

löst folgende Differentialgleichungen:

oder

mit und

Komplexe Argumente

Anwendungen in der Physik

  • Tangens und Kotangens hyperbolicus können benutzt werden, um die zeitliche Abhängigkeit der Geschwindigkeit beim Fall mit Luftwiderstand oder auch beim Wurf nach unten zu beschreiben, wenn für den Strömungswiderstand eine turbulente Strömung angesetzt wird (Newton-Reibung). Das Koordinatensystem werde so gelegt, dass die Ortsachse nach oben zeigt. Für die Geschwindigkeit gilt dann eine Differenzialgleichung der Form mit der Schwerebeschleunigung g und einer Konstanten k > 0 mit der Einheit 1/m. Es gibt dann immer eine Grenzgeschwindigkeit , die für erreicht wird, und es gilt:
    • beim Fall oder Wurf nach unten mit einer Anfangsgeschwindigkeit kleiner der Grenzgeschwindigkeit: mit
    • beim Wurf nach unten mit einer Anfangsgeschwindigkeit größer der Grenzgeschwindigkeit: mit
  • Der Tangens hyperbolicus beschreibt ferner die thermische Besetzung eines Zwei-Zustands-Systems in der Quantenmechanik: Ist n die gesamte Besetzung der beiden Zustände und E ihr Energie-Unterschied, so ergibt sich für die Differenz der Besetzungszahlen , wobei die Boltzmann-Konstante und T die absolute Temperatur ist.
  • Der Kotangens hyperbolicus tritt auch in der Kosmologie auf: Die zeitliche Entwicklung des Hubble-Parameters in einem flachen Universum, das im Wesentlichen nur Materie und Dunkle Energie enthält (was ein gutes Modell für unser tatsächliches Universum ist), wird beschrieben durch , wobei eine charakteristische Zeitskala ist und der Grenzwert des Hubble-Parameters für ist ( ist dabei der heutige Wert des Hubble-Parameters, der Dichteparameter für die Dunkle Energie). (Dieses Ergebnis ergibt sich leicht aus dem zeitlichen Verhalten des Skalenparameters, das aus den Friedmann-Gleichungen abgeleitet werden kann.) Bei der Zeitabhängigkeit des Dichteparameters der Dunklen Energie tritt dagegen der Tangens hyperbolicus auf: .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.