Funktionenfolge
Eine Funktionenfolge ist eine Folge, deren einzelne Glieder Funktionen sind. Funktionenfolgen und ihre Konvergenzeigenschaften sind für alle Teilgebiete der Analysis von großer Bedeutung. Vor allem wird hierbei untersucht, in welchem Sinne die Folge konvergiert, ob die Grenzfunktion Eigenschaften der Folge erbt oder ob Grenzwertbildungen bei Funktionenfolgen vertauscht werden können. Zu den wichtigsten Beispielen zählen Reihen von Funktionen wie Potenzreihen, Fourier-Reihen oder Dirichletreihen. Hier spricht man auch von Funktionenreihen.
Definition
Eine (reelle) Funktionenfolge ist eine Folge von Funktionen . Allgemeiner können Definitions- und Zielmenge auch andere Mengen sein, beispielsweise Intervalle; sie müssen jedoch für alle Funktionen dieselben sein.
Abstrakt kann eine Funktionenfolge als Abbildung
für eine Definitionsmenge und eine Zielmenge definiert werden. Falls als Indexmenge nicht die natürlichen Zahlen gewählt wurden, so spricht man von einer Familie von Funktionen.
Beispiele
Vertauschung Grenzwert und Integralzeichen
Für die Folge , mit
gilt für jedes fixe
- ,
sie konvergiert punktweise gegen die Nullfunktion. Jedoch gilt für alle
also
Punktweise Konvergenz reicht also nicht aus, damit Grenzwert und Integralzeichen vertauscht werden dürfen; damit diese Vertauschung erlaubt ist, ist ein strengeres Konvergenzverhalten, typischerweise gleichmäßige Konvergenz, majorisierte Konvergenz oder monotone Konvergenz, hinreichend.
Potenzreihen
In der Analysis treten Funktionenfolgen häufig als Summen von Funktionen, also als Reihe auf, insbesondere als Potenzreihe oder allgemeiner als Laurentreihe.
Fourieranalyse und Approximationstheorie
In der Approximationstheorie wird untersucht, wie gut sich Funktionen als Grenzwert von Funktionenfolgen darstellen lassen, wobei insbesondere die quantitative Abschätzung des Fehlers von Interesse ist. Die Funktionenfolgen treten dabei üblicherweise als Funktionenreihen auf, also als Summe . Beispielsweise konvergieren Fourierreihen im -Sinn gegen die darzustellende Funktion. Bessere Approximationen im Sinne der gleichmäßigen Konvergenz erhält man oft mit Reihen aus Tschebyschow-Polynomen.
Stochastik
In der Stochastik ist eine Zufallsvariable als messbare Funktion eines Maßraums mit einem Wahrscheinlichkeitsmaß definiert. Folgen von Zufallsvariablen sind daher spezielle Funktionenfolgen, ebenso sind Statistiken wie z. B. der Stichprobenmittelwert Funktionenfolgen. Wichtige Konvergenzeigenschaften dieser Funktionenfolgen sind z. B. das starke Gesetze der großen Zahlen und das schwache Gesetz der großen Zahlen.
Numerische Mathematik
In der numerischen Mathematik tauchen Funktionenfolgen beispielsweise bei der Lösung von partiellen Differentialgleichungen auf, wobei ein (nicht notwendigerweise linearer) Differentialoperator und die gesuchte Funktion ist. Bei der numerischen Lösung etwa mit der finiten Elementmethode erhält man Funktionen als Lösung der diskretisierten Version der Gleichung , wobei die Feinheit der Diskretisierung bezeichnet. Bei der Analyse des numerischen Algorithmus werden nun die Eigenschaften der diskretisierten Lösungen , die eine Funktionenfolge bilden, untersucht; insbesondere ist es sinnvoll, dass die Folge der diskretisierten Lösungen bei Verfeinerung der Diskretisierung gegen die Lösung des Ausgangsproblems konvergiert.
Eigenschaften
Monotonie
Eine Funktionenfolge heißt monoton wachsend (monoton fallend) auf , wenn ()für alle ist. Sie heißt monoton, wenn sie entweder monoton fallend oder monoton wachsend ist.
Punktweise Beschränktheit
Eine Funktionenfolge auf einer Menge , deren Wertevorrat ein normierter Raum ist, heißt punktweise beschränkt, wenn für jeden Punkt die Menge beschränkt ist. Diese Menge ist also die Menge aller Werte, die an der Stelle von einer Funktion der Folge angenommen wird.
Gleichmäßige Beschränktheit
Eine Funktionenfolge ist auf einer Menge gleichmäßig beschränkt, falls eine Konstante existiert, so dass für alle und alle .
Eine Funktionenfolge kann also höchstens dann gleichmäßig beschränkt sein, wenn jede einzelne Funktion der Folge beschränkt ist. Für jede einzelne Funktion existiert daher die Supremumsnorm . Eine Funktionenfolge ist nun genau dann gleichmäßig beschränkt, wenn sie als Menge von Funktionen bezüglich der Supremumsnorm beschränkt ist.
Dies wird auf vektorwertige Funktionen verallgemeinert: Dabei ist eine beliebige Menge, ein reeller oder komplexer normierter Raum mit der Norm . Man bezeichnet die Menge der auf definierten Funktionen, die bezüglich der Norm in beschränkt sind, als und führt auf mit eine Norm ein, die wiederum zu einem normierten Raum macht. Dann ist eine Funktionenfolge mit auf definierten Funktionen genau dann gleichmäßig beschränkt, wenn die Folge eine Teilmenge von ist und als Teilmenge von beschränkt ist.
Eine gleichmäßig beschränkte Funktionenfolge ist notwendigerweise auch punktweise beschränkt.
Lokal gleichmäßige Beschränktheit
Eine Funktionenfolge ist auf einer offenen Menge lokal gleichmäßig beschränkt, falls zu jedem eine offene Umgebung und eine Konstante existiert, so dass gilt für alle und alle .
Konvergenzbegriffe
Der Grenzwert einer Funktionenfolge wird Grenzfunktion genannt. Da die in den Anwendungen auftretenden Funktionsfolgen sehr unterschiedliches Verhalten bei wachsendem Index haben können, ist es notwendig, sehr viele verschiedene Konvergenzbegriffe für Funktionenfolgen einzuführen. Von einem abstrakteren Standpunkt handelt es sich meist um die Konvergenz bezüglich gewisser Normen oder allgemeiner Topologien auf den entsprechenden Funktionenräumen; vereinzelt treten aber auch andere Konvergenzbegriffe auf.
Die verschiedenen Konvergenzbegriffe unterscheiden sich vor allem durch die implizierten Eigenschaften der Grenzfunktion. Die wichtigsten sind:
Punktweise Konvergenz
Existiert der punktweise Grenzwert
in jedem Punkt des Definitionsbereiches, so wird die Funktionenfolge punktweise konvergent genannt. Beispielsweise gilt
die Grenzfunktion ist also unstetig.
Gleichmäßige Konvergenz
Eine Funktionenfolge ist gleichmäßig konvergent gegen eine Funktion , wenn die maximalen Unterschiede zwischen und gegen null konvergieren. Dieser Konvergenzbegriff ist Konvergenz im Sinne der Supremumsnorm.
Gleichmäßige Konvergenz impliziert einige Eigenschaften der Grenzfunktion, wenn die Folgenglieder sie besitzen:
- Der gleichmäßige Limes stetiger Funktionen ist stetig.
- Der gleichmäßige Limes einer Folge (Riemann- bzw. Lebesgue-) integrierbarer Funktionen auf einem kompakten Intervall ist (Riemann- bzw. Lebesgue-)integrierbar, und das Integral der Grenzfunktion ist der Limes der Integrale der Folgenglieder: Ist gleichmäßig konvergent gegen , so gilt
- Konvergiert eine Folge differenzierbarer Funktionen punktweise gegen eine Funktion und ist die Folge der Ableitungen gleichmäßig konvergent, so ist differenzierbar und es gilt
Lokal gleichmäßige Konvergenz
Viele Reihen in der Funktionentheorie, insbesondere Potenzreihen, sind nicht gleichmäßig konvergent, weil die Konvergenz für zunehmende Argumente immer schlechter wird. Verlangt man die gleichmäßige Konvergenz nur lokal, das heißt in einer Umgebung eines jeden Punktes, so kommt man zum Begriff der lokal gleichmäßigen Konvergenz, der für viele Anwendungen in der Analysis ausreicht. Wie bei der gleichmäßigen Konvergenz überträgt sich auch bei lokal gleichmäßiger Konvergenz die Stetigkeit der Folgenglieder auf die Grenzfunktion.
Kompakte Konvergenz
Ein ähnlich guter Konvergenzbegriff ist der der kompakten Konvergenz, der gleichmäßige Konvergenz lediglich auf kompakten Teilmengen fordert. Aus der lokal gleichmäßigen Konvergenz folgt die kompakte Konvergenz; für lokalkompakte Räume, die häufig in Anwendungen auftreten, gilt die Umkehrung.
Normale Konvergenz
In der Mathematik dient der Begriff der normalen Konvergenz der Charakterisierung von unendlichen Reihen von Funktionen. Eingeführt wurde der Begriff von dem französischen Mathematiker René Louis Baire.
Maßtheoretische Konvergenzbegriffe
Bei den maßtheoretischen Konvergenzbegriffen ist die Grenzfunktion üblicherweise nicht eindeutig, sondern nur fast überall eindeutig definiert. Alternativ lässt sich diese Konvergenz auch als Konvergenz von Äquivalenzklassen von Funktionen, die fast überall übereinstimmen, auffassen. Als eine solche Äquivalenzklasse ist dann der Grenzwert eindeutig bestimmt.
Punktweise Konvergenz fast überall
Sind ein Maßraum und eine Folge darauf messbarer Funktionen mit Definitionsmenge gegeben, so wird die Funktionenfolge punktweise konvergent fast überall bezüglich genannt, wenn der punktweise Grenzwert
fast überall bezüglich existiert, wenn also eine Menge vom Maß Null () existiert, sodass eingeschränkt auf das Komplement punktweise konvergiert.
Die Konvergenz fast überall bezüglich eines Wahrscheinlichkeitsmaßes wird in der Stochastik fast sichere Konvergenz genannt.
Beispielsweise gilt
- punktweise fast überall bezüglich des Lebesgue-Maßes.
Ein anderes Beispiel ist die Funktionenfolge , wobei für ,
Diese Folge konvergiert für kein , da sie für jedes fixe die Werte 0 und 1 unendlich oft annimmt. Für jede Teilfolge lässt sich aber eine Teilteilfolge angegeben, sodass
- punktweise fast überall bezüglich des Lebesgue-Maßes.
Gäbe es eine Topologie der punktweisen Konvergenz fast überall, so würde daraus, dass jede Teilfolge von eine Teilteilfolge enthält, die gegen 0 konvergiert, folgen, dass gegen 0 konvergieren muss. Da aber nicht konvergiert, kann es folglich keine Topologie der Konvergenz fast überall geben. Die punktweise Konvergenz fast überall ist damit ein Beispiel eines Konvergenzbegriffes, der zwar den Fréchet-Axiomen genügt, aber nicht durch eine Topologie erzeugt werden kann.[1]
Konvergenz dem Maße nach
In einem Maßraum wird eine Folge darauf messbarer Funktionen konvergent dem Maße nach gegen eine Funktion genannt, wenn für jedes
gilt.[2]
In einem endlichen Maßraum, also wenn gilt, ist die Konvergenz dem Maße nach schwächer als die Konvergenz fast überall: Konvergiert eine Folge messbarer Funktionen fast überall gegen Funktion , so konvergiert sie auch dem Maße nach gegen .[3]
In der Stochastik wird die Konvergenz dem Maße nach als Stochastische Konvergenz oder als Konvergenz in Wahrscheinlichkeit bezeichnet.[4]
Eine Abschwächung der Konvergenz dem Maße nach ist die Konvergenz lokal nach Maß. Auf endlichen Maßräumen stimmen beide Begriffe überein.
Lp-Konvergenz und Konvergenz in Sobolew-Räumen
Eine Funktionenfolge heißt konvergent gegen oder konvergent im p-ten Mittel, wenn sie im Sinne des entsprechenden Lp-Raums konvergiert, wenn also
Ist ein endliches Maß, gilt also , so folgt für aus der Ungleichung der verallgemeinerten Mittelwerte, dass eine Konstante existiert, sodass ; insbesondere folgt dann also aus der -Konvergenz von gegen auch die -Konvergenz von gegen .
Aus der -Konvergenz folgt die Konvergenz dem Maße nach, wie man aus der Tschebyschow-Ungleichung in der Form
sieht.[5]
Eine Verallgemeinerung der Lp-Konvergenz ist die Konvergenz in Sobolew-Räumen, die nicht nur die Konvergenz der Funktionswerte, sondern auch die Konvergenz gewisser Ableitungen berücksichtigt. Der Sobolewschen Einbettungssatz beschreibt die Abhängigkeiten der Konvergenzbegriffe in den unterschiedlichen Sobolew-Räumen.
Fast gleichmäßige Konvergenz
In einem Maßraum wird eine Folge darauf messbarer reell- oder komplexwertiger Funktionen fast gleichmäßig konvergent gegen eine Funktion genannt, wenn für jedes eine Menge existiert, sodass und auf dem Komplement gleichmäßig gegen konvergiert.[6]
Aus der fast gleichmäßigen Konvergenz folgt die punktweise Konvergenz fast überall [7]; aus dem Satz von Jegorow folgt, dass in einem endlichen Maßraum auch umgekehrt aus der punktweisen Konvergenz fast überall die fast gleichmäßige Konvergenz folgt.[8] In einem endlichen Maßraum, also insbesondere für reellwertige Zufallsvariablen, sind Konvergenz fast überall und fast gleichmäßige Konvergenz von reellwertigen Funktionenfolgen äquivalent.
Aus der fast gleichmäßigen Konvergenz folgt außerdem die Konvergenz dem Maße nach [7]. Umgekehrt gilt, dass eine dem Maße nach konvergente Folge eine Teilfolge enthält, die fast gleichmäßig (und damit auch fast überall) gegen die gleiche Grenzfolge konvergiert.[9]
Fast überall gleichmäßige Konvergenz
In einem Maßraum wird eine Folge darauf messbarer reell- oder komplexwertiger Funktionen fast überall gleichmäßig konvergent gegen eine Funktion genannt, wenn es eine Nullmenge gibt, sodass auf dem Komplement gleichmäßig gegen konvergiert. Für Folgen beschränkter Funktionen ist das im Wesentlichen die Konvergenz im Raum . Fast überall gleichmäßige Konvergenz kann wegen der sehr ähnlichen Bezeichnung leicht mit fast gleichmäßiger Konvergenz verwechselt werden, wie Paul Halmos in seinem Lehrbuch zur Maßtheorie kritisiert.[10]
Schwache Konvergenz
Die schwache Konvergenz für Funktionenfolgen ist ein Spezialfall der schwachen Konvergenz im Sinne der Funktionalanalysis, die allgemein für normierte Räume definiert wird. Zu beachten ist, dass es in der Funktionalanalysis, der Maßtheorie und der Stochastik mehrere verschiedene Konzepte von schwacher Konvergenz gibt, die nicht miteinander verwechselt werden sollten.
Für heißt eine Funktionenfolge aus schwach konvergent gegen , wenn für alle gilt, dass
ist. Dabei ist durch definiert.
Übersicht über die maßtheoretischen Konvergenzarten
Die nebenstehende Übersicht entstammt dem Lehrbuch Einführung in die Maßtheorie von Ernst Henze, der dafür seinerseits auf ältere Vorgänger verweist.[11] Sie verdeutlicht die logischen Beziehungen zwischen den Konvergenzarten für eine Folge messbarer Funktionen auf einem Maßraum . Ein schwarzer, durchgehender Pfeil bedeutet, dass die Konvergenzart an der Pfeilspitze aus der Konvergenzart am Pfeilursprung folgt. Für die blauen gestrichelten Pfeile gilt dies nur, wenn vorausgesetzt ist. Für die roten Strichpunktpfeile gilt die Implikation, wenn die Folge durch eine -integrierbare Funktion beschränkt ist.
Hierarchische Ordnung Konvergenzbegriffe in Räumen mit endlichem Maß
In Maßräumen mit endlichem Maß, wenn also gilt, ist es großteils möglich, die unterschiedlichen Konvergenzbegriffe nach ihrer Stärke zu ordnen. Dies gilt insbesondere in Wahrscheinlichkeitsräumen, da dort ja gilt.
Aus der gleichmäßigen Konvergenz folgt die Konvergenz dem Maße nach auf zwei unterschiedlichen Wegen, der eine führt über die punktweise Konvergenz:
- gleichmäßig lokal gleichmäßig (d. h. gleichmäßig auf einer Umgebung eines jeden Punktes).
- lokal gleichmäßig kompakt (d. h. gleichmäßig auf jeder kompakten Teilmenge).
- kompakt punktweise (jeder einzelne Punkt ist ja eine kompakte Teilmenge).
- punktweise punktweise fast überall (bzw. fast sicher).
- punktweise fast überall fast gleichmäßig.
- fast gleichmäßig dem Maße nach (bzw. stochastisch oder in Wahrscheinlichkeit).
Der andere Weg von der gleichmäßigen Konvergenz zur Konvergenz dem Maße nach führt über die -Konvergenz:
- gleichmäßig in .
- in in für alle reellen .
- in in für alle reellen .
- in für dem Maße nach (bzw. stochastisch oder in Wahrscheinlichkeit).
Von der Konvergenz dem Maße nach gelangt man zur schwachen Konvergenz:
- dem Maße nach schwach (bzw. in Verteilung).
Wichtige Theoreme über Funktionenfolgen
Literatur
- Heinz Bauer: Maß- und Integrationstheorie. 2. Auflage. De Gruyter, Berlin 1992, ISBN 3-11-013626-0 (Gebunden), ISBN 3-11-013625-2 (Broschiert), ab S. 91 (§15 Konvergenzsätze) und ab S. 128 (§20 Stochastische Konvergenz).
- Jürgen Elstrodt: Maß- und Integrationstheorie 4. Auflage. Springer, Berlin 2005, ISBN 3-540-21390-2, (Beschreibt ausführlich die Zusammenhänge zwischen den verschiedenen Konvergenzarten).
Einzelnachweise
- J. Cigler, H.-C. Reichel: Topologie. Eine Grundvorlesung. Bibliographisches Institut, Mannheim 1978. ISBN 3-411-00121-6. S. 88, Aufgabe 6
- A.N. Kolmogorow und S.V. Fomin: Reelle Funktionen und Funktionalanalysis. Deutscher Verlag der Wissenschaften, Berlin 1975, 5.4.6, Definition 4.
- A.N. Kolmogorow und S.V. Fomin: Reelle Funktionen und Funktionalanalysis. Deutscher Verlag der Wissenschaften, Berlin 1975, 5.4.6, Satz 7.
- Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik. Deutscher Verlag der Wissenschaften, Berlin 1989, S. 212.
- Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.1.
- Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. S. 93.
- Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.2.
- Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.5.
- Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.3.
- Paul Halmos: Measure Theory, Springer-Verlag, Graduate Texts in Mathematics, ISBN 978-1-4684-9442-6, §22, Seite 90
- Ernst Henze: Einführung in die Maßtheorie, BI, Mannheim,1971, ISBN 3-411-03102-6, Kapitel 4.6, Seite 146