Jüngere Dryaszeit
Die Jüngere Dryaszeit, auch nur Jüngere Dryas, Jüngere Tundrazeit, Jüngere Tundrenzeit oder Dryas 3 (im Englischen als Younger Dryas oder YD bezeichnet) war in der Erdgeschichte ein scharfer Kälterückfall (Stadial) nach dem Alleröd-Interstadial am Ende der Weichsel-Kaltzeit (Quartär). Auf die Jüngere Dryaszeit folgte das Präboreal des Holozäns: die Jüngere Dryas ist somit der letzte Zeitabschnitt der letzten Kaltzeit und des Pleistozäns.
Serie/ (Glazial) |
Klimastufen | Zeitraum v. Chr. |
---|---|---|
Holozän | ||
Präboreal | 9.610–8.690 | |
Pleistozän (Weichsel- -Spätglazial) | ||
Jüngere Dryaszeit | 10.730–9.700 ± 99 | |
Alleröd-Interstadial | 11.400–10.730 | |
Ältere Dryaszeit | 11.590–11.400 | |
Bölling-Interstadial | 11.720–11.590 | |
Älteste Dryaszeit | 11.850–11.720 | |
Meiendorf-Interstadial | 12.500–11.850 | |
(Weichsel- -Hochglazial) | ||
Mecklenburg-Phase |
Verschiedene Klimaanzeiger ergeben für die Jüngere Dryaszeit etwa einen Zeitraum von 10.730–9700 v. Chr. Sie setzte während des antarktischen Kälterückfalls ein. Das letzteiszeitliche Maximum und Meeresspiegel-Minimum fand 21.000 Jahre BP statt. Nach 18.000 BP zeigen antarktische Eisbohrkerne eine allmähliche Erwärmung. Im Zeitraum 24.500 bis 18.000 v. Chr.[2] bedeckten riesige Eisschilde große Gebiete Nordamerikas, Nordeuropas und Asiens.
Namensgebung und Begriffsgeschichte
Der Begriff Jüngere Dryaszeit wurde von Knud Jessen im Jahr 1935 geprägt. Der Name Dryas ist der botanische Gattungsname der Weißen Silberwurz (Dryas octopetala), die während dieser Zeit in ganz Deutschland und Skandinavien verbreitet war.
Definition, Korrelation
Die Jüngere Dryaszeit (Dr3) entspricht in grönländischen Eisbohrkernen (GRIP, NGRIP) dem Grönland-Stadial 1 (GS-1). Eine Typuslokalität für die Jüngere Dryaszeit wurde nicht definiert. Kriterien wurden jedoch von Johannes Iversen anhand des Profils Bølling Sø (Jütland, Dänemark) beschrieben.
In Irland ist dieser Zeitabschnitt als Nahanagan Stadial bekannt, in Großbritannien als Loch Lomond Stadial.
Datierung
Nach Warvenjahren im Meerfelder Maar dauerte sie von 12.680 Warvenjahren v. h.[3] und endete vor 11.590 Warvenjahren v. h.[4] Nach den Warven des Vansees in der Türkei endete die Jüngere Dryaszeit 10.920 ± 132 Jahre vor heute.[5] Die seit dem Beginn des Holozäns (und damit seit dem Ende der Jüngeren Dryaszeit) verstrichene Zeit wird nach der Definition des Holozän-GSSP von der ICS mit 11.700 ± 99 Kalenderjahren angegeben.[6] Daraus ergibt sich umgerechnet für die Jüngere Dryaszeit ein Zeitraum von 10.730 bis 9640 v. Chr. (Warvenjahre) bzw. 9700 ± 99 v. Chr. für das Ende der Jüngeren Dryaszeit nach der Definition durch die ICS.
Mittels der Dendrochronologie wurde das Ende auf 11.570 BP[7] bestimmt[4], was 9620 v. Chr. bedeutet. Das Geozentrum in Hannover gibt als Dauer den Zeitraum 12.700 bis 11.560 cal. v. h. an,[8] also 10.750 bis 9610 v. Chr. In den grönländischen Eisbohrkernen wurde der Beginn des Holozäns (und damit das Ende der Jüngeren Dryaszeit) mit 11.700 ± 99 Jahre b2k[9] definiert (also 9700 v. Chr.). Dies bedeutet, dass nur noch sehr geringe Differenzen zwischen den verschiedenen Methoden der absoluten Altersbestimmung bestehen.
Verlauf
Die Jüngere Dryaszeit begann mit einer raschen Abkühlung innerhalb eines Jahrzehnts, die in den höheren Breiten der nördlichen Erdhalbkugel zu neuerlichen Vergletscherungen führten, ähnlich denen der Älteren Dryaszeit ca. 1000 Jahre früher. In Mitteleuropa erreichte die Abkühlung bis 10.600 v. Chr. möglicherweise Jahresmitteltemperaturen um −3 bis −4 °C.[10] In der Wiedererwärmungsphase vor 9600 v. Chr. dürften dann Werte um zirka + 4 °C erreicht worden sein.
Kernbohrungen im grönländischen Eis (GRIP) und Isotopenuntersuchungen von Argon und Stickstoff haben gezeigt, dass die Temperaturen dort in der Jüngeren Dryas um ca. 15 K tiefer lagen als heute. Für Großbritannien wurden Durchschnittstemperaturen von etwa −5 °C festgestellt.
Sauerstoffisotope
Die δ18O-Werte, gewonnen aus dem grönländischen Eis (gemäß Dansgaard 1980), zeigen analog zur Temperaturentwicklung mit Einsetzen der Jüngeren Dryas bis zirka 10.000 v. Chr. einen drastischen Rückgang um 5 ‰ (von −33 ‰ auf −38 ‰). Anschließend steigen sie analog zu den Temperaturen bis zu Beginn des Holozäns erneut auf −32 ‰ an. −
Vulkanismus
Ein bedeutender Vulkanausbruch auf Island hinterließ im nordeuropäischen Raum (Schweden, Schottland) die Vedde-Asche – ein sehr wichtiger stratigraphischer Leithorizont in der Jüngeren Dryas, der auf 12.121 ± 114 Jahre BP bzw. 10.171 ± 114 v. Chr. datiert wird. Des Weiteren wird der vorhergehende schwefelreiche Ausbruch des Laacher Sees als Auslöser dieser Kaltzeit diskutiert.[11]
Auswirkungen
Vergletscherungen in höheren Regionen und periglaziale Ablagerungen (Löss- und Solifluktionssedimente) in der Ebene waren die Folge des drastischen Temperaturrückganges. Selbst diskontinuierliche Permafrostbedingungen stellten sich erneut ein.[12]
In Skandinavien kam es zum Verschwinden der Nadelwälder und zur Ausbreitung der Tundra, dem Lebensraum der namensgebenden Weißen Silberwurz (Dryas octopetala). In den Gebirgsregionen der gesamten Erde erhöhte sich die Schneeakkumulation und die Waldgrenze sank ab. Aus den Wüstengebieten Asiens wurde mehr Staub in die Atmosphäre eingetragen. In der Levante breitete sich Dürre aus; dies veranlasste womöglich die Natufische Kultur zur Entwicklung des Ackerbaus.
Die mit der jüngeren Dryaszeit fast gleichzeitige Huelmo-Mascardi-Kälteperiode auf der südlichen Hemisphäre nahm einen weniger dramatischen Verlauf als die Jüngere Dryaszeit auf der Nordhalbkugel. Möglicherweise handelt es sich nicht um eine globale Abkühlung, sondern die Folge einer Entwicklung, die primär die Nordhalbkugel (und hier vor allem den Nordatlantik) betraf.
Im westlichen Nordamerika waren die Auswirkungen des Temperaturrückganges während der Jüngeren Dryas weniger deutlich. Jedoch belegen erneute Gletschervorstöße im pazifischen Nordwesten auch hier einen Abkühlungstrend.[13]
Vegetationsgeschichtliche Entwicklung
- Waldkiefer
- Moorbirken im Kiefernbruchwald
- Zwerg-Birke
Die Untergrenze der Jüngeren Dryas ist von einem deutlichen Anstieg der Nicht-Baumpollen und relativ hohen Anteilen an Sonnenpflanzen (Heliophyten) gekennzeichnet. Die Pollen zeigen damit eine deutliche Abkühlungsphase nach dem Alleröd-Interstadial an. Durch die geringe Pflanzenbedeckung erfolgte in Seen eine stärkere klastische Sedimentation. Der Klimarückschlag hatte generell zu einer deutlichen Absenkung der Waldgrenze sowie zu einer Wiederausbreitung von Strauch- und Rasengesellschaften geführt (Strauchtundra mit Zwergbirke (Betula nana), Zwergweide und heliophilen Kräutern[14]). Mit dem Einsetzen der Klimaverschlechterung wurden die allerödzeitlichen Kiefernwälder aufgelichtet und auch der Bestand an Baumbirken wurde reduziert. In Deutschland und auch in Schweden zeichnete sich die Vegetation dann im weiteren Verlauf der Jüngeren Dryas durch einen allmählichen Anstieg der Moor-Birke (Betula pubescens) gefolgt von dem der Waldkiefer (Pinus sylvestris) aus, wohingegen Gräser und Kräuter letztendlich deutlich zurückgingen (nach Behre 2004). Erneut verbreiteten sich Zwerg-Birke (Betula nana), Wacholder (Juniperus), Weide (Salix), Pappeln (Populus), Artemisia, Sonnenröschen (Helianthemum), Wiesenrauten (Thalictrum) und Ampfer (Rumex). Auflichtungen mit instabilen Böden wurden von Wacholder, Artemisia, Helianthemum und Meerträubel (Ephedra) besiedelt, in Auenlagen gediehen Gänsefußgewächse (Chenopodiaceae), Ampfer und Labkräuter (Galium). Auf Feuchtstandorten fanden sich Sauergrasgewächse (Cyperaceae), Schachtelhalme, Hahnenfußgewächse (Ranunculaceae), Kreuzblütler (Cruciferae), Doldenblütler (Umbelliferae), Mädesüß (Filipendula) und Wiesenrauten.[15]
- Gewöhnlicher Beifuß
- Ephedra distachya
- Echtes Mädesüß
- Großblütiges Sonnenröschen
- Thalictrum tuberosum
- Galium album
Kulturgeschichte
Während der Jüngeren Dryas entfaltete sich in der Levante das Natufien, im nordwestlichen Mitteleuropa die Ahrensburger Kultur, in England und in Wales das Creswellien (12000 bis 8000 v. Chr.). Die vorwiegend allerödzeitliche Bromme-Kultur (11400 bis 10500 v. Chr.) im südlichen Skandinavien und in Norddeutschland reicht auch noch in die Jüngere Dryas hinein.
Ursachen
Abschmelzen der Eisschilde
Als Ursache der raschen Abkühlung während der Jüngeren Dryas wird eine Störung oder Unterbrechung des thermohalinen Kreislaufs im Nordatlantik, also des Nordatlantikstroms (die Verlängerung des Golfstroms in Richtung Grönland und Irland), durch rasch abschmelzende Gletscher in der vorangegangenen Wärmeperiode angenommen. Möglicherweise war das Hudson Bay-Ereignis der auslösende Faktor: Hinter dem Eisriegel im Bereich der Hudson Bay hatte sich im Agassizsee sehr viel Schmelzwasser angesammelt. Nach Süden hin konnte es nicht abfließen, da hier das Land ansteigt. Als die Eisbarriere brach, ergossen sich auf einen Schlag ungeheure Süßwassermengen in den Nordatlantik und stoppten den thermohalinen Zyklus. Der den antarktischen Kälterückfall auslösende Schmelzwasserpuls 1A könnte somit auch Auslöser für die jüngere Dryaszeit gewesen sein.
Erst die neuerliche Abkühlung stoppte die Süßwasserzufuhr durch das schmelzende Eis und der gewohnte Kreislauf kam wieder in Gang. Diese Theorie erklärt jedoch nicht, warum die Abkühlungsperiode auf der Südhalbkugel früher begann. Die genauen Ursachen einer so raschen Abkühlung und des ebenso abrupten Endes dieser paläoklimatisch interessanten Zeitspanne zu erforschen, ist daher nach wie vor eine Herausforderung für die Wissenschaft.
Einige Wissenschaftler, wie Broecker (2002)[16] und Bond und Lotti (1995),[17] betrachten den Abkühlungstrend der Jüngeren Dryas als ein Heinrich-Ereignis, das als H0 bezeichnet wird.
Einschlagshypothese
Im Mai 2007 wurden auf einer Tagung der American Geophysical Union von einer Forschergruppe um Richard Firestone vom Lawrence Berkeley National Laboratory zahlreiche Indizien für die Explosion eines Meteoriten geringer Dichte über Kanada als Ursache für den plötzlichen Wechsel vorgelegt.[18] Demnach soll das Ereignis gegen 10950 v. Chr. kurz vor Beginn der Jüngeren Dryas stattgefunden haben, wobei der Himmelskörper beim Eintritt in die Atmosphäre in einzelne Stücke zerbrach und neben weitläufigen Waldbränden auch ein Artensterben und eine Destabilisierung des Eisschilds verursachte. Dafür sprechen in kohlenstoffreichen Sedimenten gefundene, ungewöhnlich zahlreiche Ablagerungen von außerirdischem Gestein, kleine Kohlenstoffkügelchen, die durch schnelle Abkühlung in der Luft entstehen, sowie das auf der Erde äußerst selten vorkommende Helium-3-Isotop. Auch optisch sehr auffällige Sedimentschichten mit diesen geochemischen Anomalien konnten in mittlerweile zwei Dutzend Kernbohrungen im gesamten Bereich Nordamerikas gefunden werden. Sie ähneln dabei entfernt der KT-Grenzschicht, sowohl in Schichtdicke, Aussehen und Farbe. Die offenbar kontinentweite Existenz dieser Schicht ist ein deutliches Indiz für eine so genannte Auswurfdecke eines größeren Meteoriten- oder Airburst-Ereignisses in dieser Region. Die chemische Zusammensetzung der irdischen Gesteinsbestandteile in dieser Schicht ähnelt stark derjenigen von Gesteinen im kanadischen Quebec. Demnach sollte sich der potentielle Einschlagsort dort befinden.
Unterstützung erhielt die Annahme eines Impakts durch Funde von Nanodiamanten[19] sowie von Gold und Silber, deren Vorkommen an vielen Stellen in Nordamerika von verschiedenen Arbeitsgruppen nachgewiesen werden konnte.[20] Die Existenz von Nanodiamanten in den entsprechenden Sedimenten wurde jedoch im Zuge weiterer Analysen bislang nicht bestätigt.[21] Vermutlich wurden Graphen – Graphan Oxidaggregate als Nanodiamanten falsch interpretiert. Ein namhafter Kritiker der These ist der Impakt-Spezialist Mark Boslough.
Obwohl das Szenario eines Asteroiden- oder Kometeneinschlags in der Fachliteratur ein oft besprochenes und vielfach rezipiertes Thema ist, wurde es mangels überzeugender Belege von der Wissenschaft bisher mehrheitlich abgelehnt.[22] Laut einer 2018 veröffentlichten Studie gibt es jedoch eine Reihe neuer Indizien, die auf einen Impakt hindeuten. Im Zuge dieser Untersuchung wurden rund 160 Fundstellen weltweit ausgewertet, darunter auch Eisbohrkerne aus Grönland und der Antarktis.[23] Im Rahmen von Messungen der Operation IceBridge fanden Wissenschaftler Hinweise auf einen Krater mit einem Durchmesser von ca. 31 km unterhalb des Hiawatha-Gletschers in Nordgrönland. Fels und Gletschereis weisen in den Radarmessungen Strukturen auf, die darauf hindeuten, dass der Impakt nach Beginn des Pleistozäns und vor dessen Ende stattgefunden haben muss. Für das Alter des Kraters käme demnach ein Zeitfenster zwischen 2,6 Millionen Jahren und 12.000 Jahren in Betracht. Die letztere Annahme würde zeitlich mit der Einschlagshypothese übereinstimmen.[24]
Zusätzliche Unterstützung erfuhr die Hypothese durch breit angelegte interdisziplinäre Forschungen in engeren Umkreis der südchilenischen Stadt Osorno. Die Verfasser des 2019 publizierten Papers fanden in dieser Gegend eine Vielzahl neuer Hinweise, die nach ihrer Ansicht ein Impaktereignis mit schwerwiegenden Folgen am Beginn der Jüngeren Dryaszeit nahelegen, darunter ein anomal hohes Auftreten von Wald- und Flächenbränden.[25] Ein weiterer Hinweis auf eine extreme Hitzeentwicklung mit direkten Auswirkungen auf menschliche Gemeinschaften wurde in Form von Impaktgläsern an der archäologischen Grabungsstätte Abu Hureyra in Nordsyrien entdeckt. Die im März 2020 veröffentlichte Studie nennt als mögliche Ursache einen fragmentierten Kometen mit hohem Zerstörungspotenzial, von dem ein Bruchstück in der Nähe der Siedlung detonierte.[26]
Eine Steinstele von Göbekli Tepe in Anatolien wurde in einer Studie von Martin B. Sweatman und Dimitrios Tsikritsis als Darstellung des die jüngere Dryaszeit auslösenden Kometen gedeutet.[27] Diese These ist nicht unumstritten.[28]
Ein für die Impakthypothese sprechendes Indiz ist zudem die Entdeckung einer Platinanomalie in der südafrikanischen Provinz Limpopo, nördlich von Pretoria. Die durch Bohrungen in einer Torflagerstätte gewonnenen Proben wurden von einem Forschungsteam der Witwatersrand-Universität (Johannesburg) ausgewertet und konnten nach Angaben der Universität vom Oktober 2019 dem Beginn der Jüngeren Dryas zugeordnet werden.[29] Der Nachweis eines signifikant erhöhten Auftretens von atmosphärischem Platinstaub ist der erste derartige Fund auf afrikanischem Boden und bestätigt ähnliche Analysen aus Patagonien und von mehr als 25 Fundorten auf der Nordhalbkugel.[30]
Literatur
(chronologisch)
- W. H. Berger: The Younger Dryas cold spell – a quest for causes, in: Global and Planetary Change 3, 1990, S. 219–237. doi:10.1016/0921-8181(90)90018-8.
- Richard B. Alley, et al.: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. In: Nature. 362, 1993, S. 527–529. doi:10.1038/362527a0.
- M. Spurk, et al.: Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas/Preboreal transition. In: Radiocarbon. 40, Nr. 3, 1998, S. 1107–1116, doi:10.1017/S0033822200019159.
- Achim Brauer, et al.: High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany, in: Quaternary Science Reviews 18, 1999, S. 321–329 doi:10.1016/S0277-3791(98)00084-5.
- Richard B. Alley: The Younger Dryas cold interval as viewed from central Greenland, in: Quaternary Science Reviews 19, 2000, S. 213–226. doi:10.1016/S0277-3791(99)00062-1.
- Achim Brauer, et al.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. in: Nature Geoscience. 1, 2008, S. 520–523.
- Kate Ravilious: Mini ice age took hold of Europe in months. In: New Scientist Nr. 2734, November 2009 (newscientist.com).
Weblinks
- Nadja Podbregar: Eifel: Mega-Eruption neu datiert – Laacher-See-Ausbruch ereignete sich fast 130 Jahre früher als gedacht, auf: scinexx.de vom 1. Juli 2021
Einzelnachweise
- Józef Mitka, Wojciech Bąba, Kazimierz Szczepanek: Putative forest glacial refugia in the Western and Eastern Carpathians. In: Modern Phytomorphology. Band 5, 2014, S. 85–92 (phytomorphology.org PDF).
- Peter U. Clark, Arthur S. Dyke, Jeremy D. Shakun, Anders E. Carlson, Jorie Clark, Barbara Wohlfarth, Jerry X. Mitrovica, Steven W. Hostetler, A. Marshall McCabe: The Last Glacial Maximum. In: Science. Band 325, Nr. 5941, 2009, S. 710–714.
- vor heute, bezieht sich in der Warvenchronologie auf das Jahr 1950
- Thomas Litt, Karl-Ernst Behre, Klaus-Dieter Meyer, Hans-Jürgen Stephan und Stefan Wansa: Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalter und Gegenwart (Quaternary Science Journal), 56(1/2), 2007, S. 7–65 ISSN 0424-7116 (quaternary-science.publiss.net (Seite nicht mehr abrufbar, Suche in Webarchiven) Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis. PDF).
- Günter Landmann, Andreas Reimer, Gerry Lemcke, Stephan Kempe: Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey. In: Palaeogeography, Palaeoclimatology, Palaeoecology. 122, 1996, S. 107–118.
- Mike Walker, Sigfus Johnson, Sune Olander Rasmussen, Trevor Popp, Jørgen-Peder Steffensen, Phil Gibbard, Wim Hoek, John Lowe, John Andrews, Svante Björck, Les C. Cwynar, Konrad Hughen, Peter Kershaw, Bernd Kromer, Thomas Litt, David J. Lowe, Takeshi Nakagawa, Rewi Newnham und Jakob Schwander: Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. In: Journal of Quaternary Science. 24, Nr. 1, 2008, S. 3–17 doi:10.1002/jqs.1227.
- Die Angabe BP in der Dendrochronologie bezieht sich ebenfalls auf das Jahr 1950
- Das Quartär in Niedersachsen und benachbarten Gebieten. (lbeg.niedersachsen.de (Memento des Originals vom 4. März 2016 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. PDF).
- b2k = vor dem Jahr 2000
- U. von Grafenstein, u. a.: Isotope signature of the Younger Dryas and two minor oscil-lations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnologic interpretation based on bulk and biogenic carbonates. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 159, 2000, S. 215–229.
- https://www.clim-past.net/14/969/2018/cp-14-969-2018.pdf Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly Baldini/Brown/Mawdsley 04 Jul 2018
- K.E. Behre: Biostratigraphy of the last glacial period in Europe. In: Quaternary Science Reviews. Band 8, 1989, S. 25–44.
- P. A. Friele, J. J.: Younger Dryas readvance in Squamish river valley, southern Coast mountains, British Columbia. In: Quaternary Science Reviews. Band 21, Nr. 18–19, 2002, S. 1925–1933, doi:10.1016/S0277-3791(02)00081-1.
- W.Z. Hoek: Palaeogeography of Lateglacial Vegetations – Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape, and climate in The Netherlands. In: Netherlands Geographical Studies. Band 230. Utrecht 1997.
- A. H. Geurts: Weichselian to Early Holocene vegetation development and fluvial adjustment in the Lower Rhine Valley, Germany. Diplomarbeit. Utrecht 2011.
- Broecker, W.S.: Massive iceberg discharges as triggers for global climate change. In: Nature. Band 372, 2002, S. 421–424, doi:10.1038/372421a0.
- Bond, G.C., Lotti, R.: Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation. In: Science. 267, Nr. 5200, 1995, S. 1005, doi:10.1126/science.267.5200.1005.
- Rex Dalton: Blast in the past? In: Nature. 447, Nr. 7142, 2007, S. 256–257, doi:10.1038/447256a.
- D. J. Kennett, J. P. Kennett,. A. West, C. Mercer, S. S. Que Hee, L. Bement, T. E. Bunch, M. Sellers, W. S. Wolbach: Nanodiamonds in the Younger Dryas Boundary Sediment Layer. In: Science. Band 323, Nr. 5910, Januar 2009, S. 942 (Abstract englisch).
- Carey Hoffman: Exploding Asteroid Theory Strengthened by New Evidence Located in Ohio, Indiana. University of Cincinnati, 7. Februar 2008, abgerufen am 4. Dezember 2016.
- Tyrone L. Daulton, Nicolas Pinter, Andrew C. Scott: No evidence of nanodiamonds in Younger–Dryas sediments to support an impact event. (PDF) In: PNAS Early Edition. 107, Nr. 34, August 2010. doi:10.1073/pnas.1003904107.
- Nicholas Pinter, Andrew C. Scott, Tyrone L. Daulton, Andrew Podoll, Christian Koeberl, R. Scott Anderson, Scott E. Ishman: The Younger Dryas impact hypothesis: A requiem. (PDF) In: Earth-Science Reviews (Elsevier). 106, Nr. 3–4, Juni 2011, S. 247–264. doi:10.1016/j.earscirev.2011.02.005.
- Wendy S. Wolbach, Joanne P. Ballard, Paul A. Mayewski, Andrew C. Parnell, Niamh Cahill, Victor Adedeji, Ted E. Bunch, Gabriela Domínguez-Vázquez, Jon M. Erlandson, Richard B. Firestone, Timothy A. French, George Howard, Isabel Israde-Alcántara, John R. Johnson, David Kimbel, Charles R. Kinzie, Andrei Kurbatov, Gunther Kletetschka, Malcolm A. LeCompte, William C. Mahaney, Adrian L. Melott, Siddhartha Mitra, Abigail Maiorana-Boutilier, Christopher R. Moore, William M. Napier, Jennifer Parlier, Kenneth B. Tankersley, Brian C. Thomas, James H. Wittke, Allen West, James P. Kennett: Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments. (PDF) In: The Journal of Geology. 126, Februar 2018. doi:10.1086/695704.
- Meldung: Brian Clark Howard: City-size impact crater found under Greenland ice. In: National Geographic. 15. November 2018, abgerufen am 23. Dezember 2018. Forschungsartikel: Kurt H. Kjær1 u. a.: A large impact crater beneath Hiawatha Glacier in northwest Greenland. In: Science Advances. 14. November 2018, doi:10.1126/sciadv.aar8173.
- Mario Pino, Ana M. Abarzúa, Giselle Astorga, Alejandra Martel-Cea, Nathalie Cossio-Montecinos, R. Ximena Navarro, Maria Paz Lira, Rafael Labarca, Malcolm A. LeCompte, Victor Adedeji, Christopher R. Moore, Ted E. Bunch, Charles Mooney, Wendy S. Wolbach, Allen West, James P. Kennett: Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. In: Nature Scientific Reports. 9, März 2019. doi:10.1038/s41598-018-38089-y.
- Andrew M. T. Moore, James P. Kennett, William M. Napier, Ted E. Bunch, James C. Weaver, Malcolm LeCompte, A. Victor Adedeji, Paul Hackley, Gunther Kletetschka, Robert E. Hermes, James H. Wittke, Joshua J. Razink, Michael W. Gaultois, Allen West: Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C. In: Nature Scientific Reports. 10, März 2020. doi:10.1038/s41598-020-60867-w.
- Martin B. Sweatman und Dimitrios Tsikritsis, DECODING GÖBEKLI TEPE WITH ARCHAEOASTRONOMY: WHAT DOES THE FOX SAY?, Mediterranean Archaeology and Archaeometry, Vol. 17, No 1, (2017), Seiten 233–250.
- Vgl. Jens Notroff et al, MORE THAN A VULTURE: A RESPONSE TO SWEATMAN AND TSIKRITSIS, Mediterranean Archaeology and Archaeometry, Vol. 17, No 2, (2017), Seiten 57–74.
- Mitteilung der Universität Witwatersrand (Johannesburg), abgerufen am 16. Oktober 2019
- Francis Thackeray, Louis Scott, P. Pieterse: The Younger Dryas interval at Wonderkrater (South Africa) in the context of a platinum anomaly. (PDF) In: Palaeontologia Africana. 54, Oktober 2019, S. 30–35. doi:10.5067/ASTER/ASTGTM.002.