Das Buch der Beweise

Das BUCH der Beweise (englisch Proofs from THE BOOK) ist ein Buch der Mathematiker Martin Aigner und Günter M. Ziegler und versteht sich als eine Sammlung besonders eleganter mathematischer Beweise. Es wurde erstmals 1998 auf Englisch und 2002 auf Deutsch herausgegeben sowie in weiteren Sprachen veröffentlicht.

Das Buch i​st dem Mathematiker Paul Erdős gewidmet u​nd der Titel bezieht s​ich auf e​ine Idee v​on Erdős, d​ass es perfekte Beweise z​u mathematischen Sätzen gibt, s​eine platonische Auffassung d​er Mathematik deutlich machend:

„Ich b​in nicht qualifiziert z​u sagen, o​b Gott existiert o​der nicht – i​ch bezweifle e​her seine Existenz. Nichtsdestoweniger s​age ich immer, d​ass der SF[1] dieses transfinite Buch hat, d​as die besten Beweise a​ller mathematischen Sätze enthält, Beweise, d​ie elegant u​nd perfekt sind.“[2]

Erdős verwies i​n Vorträgen häufig scherzhaft a​uf „Das Buch“ (The Book), w​obei eine d​er bekanntesten Aussagen ist, m​an brauche a​ls Mathematiker z​war nicht a​n Gott z​u glauben, jedoch sollte m​an an d​as Buch glauben (You don’t h​ave to believe i​n God, b​ut you should believe i​n The Book).[3][4] Nach d​en Aussagen v​on Erdős’ e​ngem Mitarbeiter Béla Bollobás n​ahm er d​ie Idee allerdings n​icht allzu ernst.[5] Wenn e​r einem Mathematiker e​in Kompliment für e​in in seinen Augen besonders elegantes Theorem machen wollte, pflegte e​r zu sagen, d​er Beweis „würde geradeheraus a​us dem Buch“ kommen (It’s straight f​rom the Book).[6]

Erdős beteiligte s​ich noch m​it Notizen u​nd Vorschlägen a​n den Ausarbeitungen, verstarb a​ber noch v​or der Veröffentlichung d​es Buches.[7]

Die Autoren bemühten sich, n​ur Beweise z​u wählen, d​ie mit d​en Kenntnissen d​es Mathematik-Grundstudiums verständlich sind.

Das Buch behandelt d​ie fünf Bereiche Zahlentheorie, Geometrie, Analysis, Kombinatorik u​nd Graphentheorie i​n 40 Kapiteln. Das Kusszahlenproblem (Problem d​er 13 Kugeln) w​urde ab d​er zweiten Auflage weggelassen, d​a sich d​er Beweis, d​er einer Skizze v​on John Leech v​on 1956 folgte u​nd diese z​u vervollständigen suchte, a​ls unvollständig erwies u​nd der Versuch seiner Ergänzung a​ls zu umfangreich.

Kapitel

Zahlentheorie

Geometrie

  • Kapitel 9: Hilberts drittes Problem: Zerlegung von Polyedern, nach den Verbesserungen und Vervollständigungen von Max Dehns Beweis durch Hugo Hadwiger, Kagan, Boltjanski und andere.
  • Kapitel 10: Satz von Sylvester und Tibor Gallai: Für jede Anordnung von n Punkten in der Ebene, die nicht alle auf einer Geraden liegen, gibt es eine Gerade, die genau zwei der Punkte enthält. Gegeben wird der Beweis von L. M. Kelly, den Coxeter 1948 veröffentlichte. Auch Verallgemeinerungen des Satzes von Nicolaas Govert de Bruijn und Erdős werden behandelt.
  • Kapitel 11: eine von P. R. Scott 1970 ausgesprochene Vermutung, dass Punkte in der Ebene, die nicht alle auf einer Geraden liegen, mindestens n-1 Steigungen der durch je zwei Punkte verlaufenden Geraden haben. Präsentiert wird der Beweis von Eli Goodman, Ricky Pollack und Peter Ungar (1982).
  • Kapitel 12: Drei Anwendungen der Eulerschen Polyederformel (für die der Beweis von Staudts präsentiert wird). Unter anderem wird ein weiterer Beweis des Satzes von Sylvester und Gallai daraus abgeleitet (nach Norman Steenrod) und ein Satz von Georg Pick (1899): Jedes elementare Dreieck, das heißt mit Eckpunkten, die auf einem ganzzahligen Gitter liegen, das aber keine weiteren Gitterpunkte enthält, hat den Flächeninhalt .
  • Kapitel 13: Der Starrheitssatz für dreidimensionale Polyeder von Augustin Louis Cauchy, mit dem Beweis von Cauchy.
  • Kapitel 14: Die Frage der maximalen Anzahl sich paarweise berührender d-dimensionaler Simplizes in d Dimensionen. Ergebnisse von Joseph Zaks und Micha Perles werden präsentiert.
  • Kapitel 15: Eine Vermutung von Erdős (1950), dass jede Menge von mehr als Punkten im d-dimensionalen euklidischen Raum mindestens einen Winkel zwischen den Verbindungslinien der Punkte liefert, der kein spitzer Winkel ist. Beweis von Ludwig Danzer und Branko Grünbaum (1962), wobei sie gleichzeitig eine erweiterte Vermutung von Victor Klee bewiesen.
  • Kapitel 16: Die Widerlegung der Borsuk-Vermutung über die Zerlegung konvexer Mengen im d-dimensionalen Raum (zuerst durch Jeff Kahn und Gil Kalai 1994), mit dem Beweis von A. Nilli.[10]

Analysis

Kombinatorik

  • Kapitel 25: Schubfachprinzip und doppeltes Abzählen. Unter anderem wird dort eine von Erdős Lieblingsfragen an angehende junge Mathematiker erwähnt, die er auch Lajos Pósa bei ihrer ersten Begegnung stellte. Als Anwendung des doppelten Abzählens wird Sperners Lemma (von Emanuel Sperner) erwähnt, aus dem der Brouwersche Fixpunktsatz abgeleitet wird.
  • Kapitel 26: Zerlegung von Rechtecken in Rechtecke nach Max Dehn, Nicolaas Govert de Bruijn.
  • Kapitel 27: Drei berühmte Beweise über endliche Mengen. Der Satz von Sperner (Beweis von David Lubell), der Satz von Erdős-Ko-Rado (nach Gyula Katona) und der Heiratssatz von Hall (nach T. E. Easterfield und Paul Halmos / H. Vaughan) aus der Kombinatorik.
  • Kapitel 28: Analyse perfekter Kartenmischungen (Riffle Shuffle, analysiert von Edgar Gilbert und Claude Shannon 1955) nach Persi Diaconis und David Aldous (1986). Präsentiert wird der Beweis im Buch für mindestens 12 Mischungen, Diaconis und Aldous bewiesen, dass sieben ausreichen (aber nicht weniger).
  • Kapitel 29: Lemma von Gessel und Viennot (Ira Gessel, Gerard Viennot 1985) in der abzählenden Kombinatorik, mit Anwendungen zum Beispiel auf Determinanten.[13]
  • Kapitel 30: Die Cayley-Formel über die Anzahl beschrifteter Bäume (Arthur Cayley 1889). Es werden vier Beweise gegeben.
  • Kapitel 31: Identitäten für Produkte unendlicher Reihen und Reihen mit Zerfällungen (Partitionen), wie sie zum Beispiel von Euler und Ramanujan behandelt wurden. Behandelt wird ein Bijektions-Beweis für eine Identität von Euler nach Doron Zeilberger und David Bressoud.
  • Kapitel 32: Vervollständigung von lateinischen Quadraten. Die Möglichkeit dazu wurde vermutet von Trevor Evans 1960, bewiesen von Bohdan Smetaniuk 1981.[10]

Graphentheorie

  • Kapitel 33: Problem von Jeff Dinitz (1978) über Graphenfärbung, bewiesen von Fred Galvin 1995 nach Vorarbeit von Jeanette Janssen (1992). Ist es möglich, die Zellen eines n×n-Quadrats so zu färben, dass die Farben in jeder Reihe und Spalte verschieden sind? Dabei wird jeder Zelle eine Palette (Liste) von n Farben zugewiesen, die auch von Zelle zu Zelle verschieden sein kann. Galvin bewies, dass es möglich ist.
  • Kapitel 34: Der Fünf-Farben-Satz mit Farblisten (wie im Dinitz-Problem) mit dem Beweis von Carsten Thomassen (1979).
  • Kapitel 35: Das Problem der Museumswächter von Victor Klee, mit der Lösung von Vašek Chvátal: Bei n Wänden sind mindestens (also n/3 abgerundet) Wachen nötig für die „schlechtestmögliche“ Anordnung der Wände.[14]
  • Kapitel 36: der Satz von Turan in der extremalen Graphentheorie, für den fünf Beweise gegeben werden (unter anderem von Turan, Erdős).
  • Kapitel 37: Berechnung der Kapazität von Kommunikationskanälen und Graphen nach Claude Shannon (mit einem Beweis von Laszlo Lovasz).
  • Kapitel 38: Beweis der Vermutung von Martin Kneser (1955) über die Färbungszahl von Kneser-Graphen, für den nach dem Beweis von Laszlo Lovasz 1978 Imre Bárány und Joshua Greene (2002) vereinfachte Beweise gaben. Präsentiert wird der Beweis von Greene.
  • Kapitel 39: Der Freundschaftssatz der Graphentheorie von Erdős, Alfred Renyi und Vera T. Sós (mit deren Beweis).
  • Kapitel 40: Anwendungen der probabilistischen Methode in der Graphentheorie nach Erdős und Rényi, zum Beispiel auf die Abschätzung von Ramsey-Zahlen.[10]

Sonstiges

  • Andere Mathematiker haben ihre eigenen Kandidaten veröffentlicht, zum Beispiel Sergei Tabachnikov.[15]
  • Der Zahlentheoretiker Godfrey Harold Hardy verfasste im Jahr 1940 den Essay „Apologie eines Mathematikers“, in dem er sich grundsätzlich mit der Frage nach der Ästhetik in der Mathematik auseinandersetzt und auch die Frage nach den „elegantesten Beweisen“ stellt.
  • George Pólya wurde bekannt durch sein Buch „Vom Lösen mathematischer Probleme“ (egl. „How to solve it“), das zuerst 1945 bei Princeton University Press erschien, in 17 Sprachen übersetzt wurde und sich über eine Million Mal verkaufte.[16]
  • David Hilbert stellte das Problem der Einfachheit von Beweisen, manchmal auch als Hilberts 24. Problem bezeichnet.

Verweise

  1. Supreme Fascist Oberster Faschist ist eine von Erdős gerne benutzte Bezeichnung für Gott.
  2. Erdős, zitiert in Paul Hoffman: The man who only loved numbers. 1998, S. 27.
  3. Aigner, Ziegler im Vorwort von Das Buch der Beweise.
  4. Paul Hoffman: The Man who only loved numbers. 1998, Kapitel 1 Straight from the Book.
  5. So he always used ‘The Book’ as a joke to enliven his lectures. It should not be taken seriously.
    In: Béla Bollobás: Graphs Extremal and Random. Interview, Universität Singapur, 2007, PDF.
  6. Hoffman: The Man who only loved numbers. S. 26.
  7. Aigner, Ziegler, Vorwort zu Das Buch der Beweise.
  8. Andere Beweise gaben P. L. Tschebyschow und S. Ramanujan.
  9. Beweis auf Wikibooks. Ivan Niven: A simple proof that π is irrational. In: Bulletin of the American Mathematical Society. Band 53, 1947, S. 509 (englisch, MR0021013).
  10. In der vierten englischen Auflage, Springer Verlag 2009.
  11. Die Zerlegung in eine gerade Anzahl ist trivial.
  12. Monsky, in: American Mathematical Monthly. Bd. 77, 1970, S. 161.
  13. Gefunden wurde es schon 1972 durch Bernt Lindström, aber damals wenig beachtet.
  14. Chvatal, in: Journal of Combinatorial Theory. Bd. 18, 1975, S. 39.
  15. Tabachnikov, Proofs (not) from the book, Mathematical Intelligencer, 2014, Nr. 2
  16. Schule des Denkens. Vom Lösen mathematischer Probleme („How to solve it“). 4. Aufl. Francke Verlag, Tübingen 1995, ISBN 3-7720-0608-6 (Sammlung Dalp). - Englische Ausgabe: How to solve it, Princeton University Press 2004 (mit Vorwort von John Horton Conway, erweiterte Ausgabe)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.