Satz von Sylvester-Gallai

Der Satz v​on Sylvester-Gallai i​st ein mathematischer Satz d​er ebenen Geometrie. Er besagt, d​ass zu j​eder endlichen Menge v​on Punkten, d​ie nicht a​lle auf e​iner Geraden, a​ber in e​iner Ebene liegen, e​ine Gerade existiert, d​ie genau z​wei Punkte d​er Menge enthält. Benannt i​st er n​ach James Joseph Sylvester, d​er die Aussage 1893 i​n der Educational Times erstmals formulierte,[1] u​nd Tibor Gallai, d​er 1944 d​en ersten Beweis veröffentlichte[2], nachdem Paul Erdős d​as Problem 1943 n​eu stellte.[3] Der e​rste bekannte Beweis stammt v​on Eberhard Melchior a​us dem Jahre 1940.[4]

Aussage

Sei eine endliche Menge von in einer Ebene liegenden Punkten, die nicht alle auf einer Geraden liegen. Dann gibt es eine Gerade, die genau zwei Punkte von enthält.

Eine alternative äquivalente Formulierung lautet:

Sei eine endliche Menge von Punkten der Ebene mit folgender Eigenschaft: Auf jeder Geraden durch zwei Punkte aus liegt mindestens ein dritter Punkt dieser Menge. Dann liegen alle Punkte aus auf einer Geraden.

Die Aussage g​ilt in unveränderter Form a​uch in höherdimensionalen Räumen; i​ndem man d​rei Punkte wählt, d​ie nicht a​uf einer Geraden liegen, u​nd die d​urch sie bestimmte Ebene betrachtet, lässt s​ich das Problem a​uf den zweidimensionalen Fall zurückführen.

Beweis

Der folgende Beweis g​eht auf Leroy Milton Kelly zurück.[5] Er w​ird häufig a​ls Musterbeispiel e​ines eleganten Beweises zitiert.

Wir betrachten Paare bestehend aus einer Geraden durch zwei Punkte aus und einem Punkt , der nicht auf liegt. Da nicht alle Punkte aus auf einer Geraden liegen, gibt es solche Paare. Außerdem gibt es auch nur endlich viele solche Paare, da die Menge endlich ist. Damit können wir ein Paar auswählen, sodass der Abstand, den von hat, minimal wird. Es bleibt zu zeigen, dass die gewünschte Eigenschaft besitzt, dass es also keinen dritten Punkt aus gibt, der auf ihr liegt.

Konstellation der Punkte und Geraden im entscheidenden Beweisschritt

Dazu nehmen wir an, es gäbe drei solche Punkte. Sei zunächst der Fußpunkt des Lotes von auf . Nach dem Schubfachprinzip gibt es dann zwei Punkte von , die auf der gleichen Seite von auf liegen, diese seien und , wobei näher an liege als . Dann ist der Abstand von zur Geraden durch und kleiner als der Abstand von zu , denn er ist höchstens so groß wie der Abstand von zu , der als Höhe im rechtwinkligen Dreieck kleiner ist als die Länge der Kathete .

Dies ist ein Widerspruch zur Wahl von , denn die Gerade durch und bildet demnach zusammen mit dem Punkt ein Paar mit kleinerem Abstand. Somit muss die Annahme falsch sein, auf liegen damit wie gewünscht genau zwei Punkte aus .

Es g​ibt eine Reihe weiterer Beweise für d​en Satz v​on Sylvester-Gallai. So konnte H. S. M. Coxeter zeigen, d​ass die Anordnungsaxiome allein bereits z​um Beweis ausreichen, d​er Begriff e​ines Abstandes a​lso nicht notwendig ist.

Weitere Beweise stammen u​nter anderem v​on Robert Steinberg (siehe unten), Robert Creighton Buck,[6] Norman Steenrod,[6] Abraham Robinson,[7] G. D. W. Lang (1955)[8] u​nd V. C. Williams (1968).[9] Ein Beweis d​es äquivalenten projektiv-dualen Satzes stammt v​on Eberhard Melchior (* 1912) a​us dem Jahr 1940 u​nd ist s​omit der e​rste Beweis.[10] Er benutzt d​en Eulerschen Polyedersatz i​n projektiver Form.

Anwendung

Die Fano-Ebene besteht aus 7 Punkten und 7 Geraden, wobei auf jeder Geraden drei Punkte liegen. Daher muss eine der Geraden als Kreis dargestellt werden.

Eine direkte Folge a​us dem Satz v​on Sylvester-Gallai i​st die Tatsache, d​ass sich d​ie Fano-Ebene n​icht in d​ie euklidische Ebene einbetten lässt.

Der Satz g​ilt auch i​n der projektiven Ebene (Robert Steinberg)[11], sodass m​an die d​uale Aussage ableiten kann: Zu e​iner endlichen Menge v​on Geraden, d​ie nicht a​lle durch e​inen Punkt gehen, g​ibt es e​inen Punkt, d​er auf g​enau zwei dieser Geraden liegt.

Verallgemeinerungen

Nach dem Satz von Sylvester-Gallai gibt es zu jeder endlichen, nicht kollinearen Punktemenge mindestens eine Gerade, die durch genau zwei der Punkte geht. Von Dirac und Motzkin stammt die Vermutung, dass es zu Punkten sogar mindestens solcher Geraden gibt.[12] Andererseits sind für gerade Zahlen Konstruktionen bekannt, bei denen tatsächlich genau solcher Geraden existieren, sodass die Schranke nicht verbessert werden kann. Ist ungerade, so gibt es Anordnungen von Punkten, zu denen es Geraden gibt, die genau zwei der Punkte enthalten.[13] Ben Green und Terence Tao konnten zeigen, dass diese Schranken zumindest für große nicht verbessert werden können, es gibt also eine Konstante , sodass für jedes gilt: Liegen Punkte nicht auf einer Geraden, so gibt es mindestens (für gerade ) bzw. (für ungerade ) Geraden, die durch genau zwei der Punkte gehen.[14]

Literatur

Einzelnachweise

  1. Sylvester, Mathematical Question 11851, Educational Times, Band 59, 1893, S. 98.
  2. Gallai, Problem 4065, American Mathematical Monthly, Band 51, 1944, S. 169–171.
  3. Erdős, Problem 4065, American Mathematical Monthly, Band 50, 1943, S. 65.
  4. Eberhard Melchior: Über Vielseite der projektiven Ebene. In: Deutsche Mathematik, Band 5, 1940, S. 461–475. Als Adresse wurde in der Arbeit München angegeben. Dargestellt ist sein Beweis in S. Felsner: Geometric Graphs and Arrangements. Vieweg, 2004, S. 72 f.
  5. Veröffentlicht in H. S. M. Coxeter, A problem of collinear points, American Mathematical Monthly, Band 55, 1948, S. 26–28.
  6. Erdős, Solution to problem 4065, American Mathematical Monthly, Band 51, 1944, S. 169–171.
  7. Siehe Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc., Band 70, 1951, S. 451–464.
  8. Lang, The dual of a well known problem, Mathematical Gazette, Band 39, 1955, S. 314.
  9. Williams, A proof of Sylvester´s theorem on collinear points, American Mathematical Monthly, Band 75, 1968, S. 980–982.
  10. Melchior, Über Vielseite der Projektiven Ebene, Deutsche Mathematik, Band 5, 1940, S. 461–475. Dargestellt in S. Felsner Geometric Graphs and Arrangements, Vieweg 2004, S. 72f
  11. R. Steinberg, Three point collinearity, American Mathematical Monthly, Band 51, 1944, S. 169–171. Ein projektiver Beweis.
  12. G. A. Dirac: Collinearity Properties of Sets of Points. In: The Quarterly Journal of Mathematics. 1951, Vol. 2. S. 221–227. doi:10.1093/qmath/2.1.221, Th. Motzkin: The lines and planes connecting the points of a finite set. In: Transactions of the American Mathematical Society. 1951, Vol. 70. S. 451–464. doi:10.2307/1990609
  13. D. W. Crowe, T. A. McKee: Sylvester’s Problem on Collinear Points. In: Mathematics Magazine. 1968, Vol. 41, No. 1. S. 30–34. doi:10.2307/2687957
  14. Ben Green, Terence Tao: On Sets Defining Few Ordinary Lines. In: Discrete & Computational Geometry. 2013, Vol. 50, No. 2. S. 409–468. doi:10.1007/s00454-013-9518-9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.