Zerfallsreihe

Eine Zerfallsreihe im allgemeinen Sinn ist die Abfolge der nacheinander entstehenden Produkte eines radioaktiven Zerfalls. Sie bildet sich, indem ein Radionuklid sich in ein anderes, dieses in ein drittes umwandelt usw. („zerfällt“). Das zuerst entstehende Nuklid wird Tochternuklid genannt, das dem Tochternuklid folgende Enkelnuklid, das dem Enkelnuklid folgende Urenkelnuklid usw.

Aus einer vorhandenen Menge eines instabilen Nuklids bildet sich durch Zerfall ein Gemisch der Nuklide, die ihm in der Zerfallsreihe folgen, bevor irgendwann alle Atomkerne die Reihe bis zum Endnuklid durchlaufen haben. In dem Gemisch sind Nuklide mit kurzer Halbwertszeit nur in geringer Menge vorhanden, während solche mit längerer Halbwertszeit sich entsprechend stärker ansammeln.

Die drei natürlichen Zerfallsreihen

Praktisch und historisch wichtig sind die Zerfallsreihen der drei primordialen Radionuklide Uran-238, Uran-235 und Thorium-232, auch Natürlich radioaktive Familien genannt.[1] Sie entstehen durch Alpha- und Beta-Zerfälle, die mehr oder weniger regelmäßig abwechselnd aufeinander folgen. Manche der beteiligten Nuklide haben auch die alternativ mögliche, aber seltene Zerfallsart Spontanspaltung; sie führt aus der jeweiligen Zerfallsreihe hinaus und wird hier nicht beachtet.

Ein Alphazerfall verringert die Massenzahl des Atomkerns um 4 Einheiten, ein Betazerfall lässt sie unverändert. Schreibt man die Massenzahl A als A = 4n+m (dabei ist n irgendeine natürliche Zahl und m eine der Zahlen 0, 1, 2 oder 3), bleibt deshalb m innerhalb einer solchen Zerfallsreihe stets konstant. Die drei genannten Anfangsnuklide haben verschiedene Werte von m. Daher erzeugt

Thorium-232 ist zwar primordial, aber nach heutiger Kenntnis sind auch seine Vorgängernuklide bis zum Plutonium-244 auf der Erde vorhanden.[2]

Eine vierte Zerfallsreihe

In der obigen (4n+m)-Systematik „fehlt“ eine Reihe mit m = 1. Da es im Massenzahlbereich von Uran und Thorium kein primordiales Nuklid mit A = 4n+1 gibt, kommt eine solche Zerfallsreihe in der Natur nicht (mehr) vor. Der Systematik zuliebe wird aber die Zerfallsreihe der künstlich erzeugbaren Nuklide Plutonium-241 oder Neptunium-237, die Neptunium-Reihe, als diese fehlende vierte Reihe betrachtet.[3] Nur das letzte Radionuklid dieser Reihe, Bismut-209, ist wegen seiner extrem langen Halbwertszeit noch vorhanden. Es wurde lange für das Endnuklid gehalten, bis 2003 entdeckt wurde, dass es ein Alphastrahler mit 19 Trillionen Jahren Halbwertszeit ist. Das Endnuklid ist daher Thallium-205.

Lage in der Nuklidkarte

Neutronenzahl N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
Curium Z = 96





















242Cm

244Cm

246Cm
Americium Z = 95




















240Am
241Am
242Am
243Am
244Am
Plutonium Z = 94

















236Pu
237Pu
238Pu
239Pu
240Pu
241Pu
242Pu
243Pu
244Pu
Neptunium Z = 93















233Np
234Np
235Np
236Np
237Np
238Np
239Np
240Np


Uran Z = 92













230U
231U
232U
233U
234U
235U
236U
237U
238U
239U
240U

Protactinium Z = 91













229Pa
230Pa
231Pa
232Pa
233Pa
234Pa






Thorium Z = 90











226Th
227Th
228Th
229Th
230Th
231Th
232Th
233Th
234Th





Actinium Z = 89











225Ac
226Ac
227Ac
228Ac










Radium Z = 88








221Ra
222Ra
223Ra
224Ra
225Ra
226Ra
227Ra
228Ra









Francium Z = 87









221Fr
222Fr
223Fr













Radon Z = 86






217Rn
218Rn
219Rn
220Rn

222Rn













Astat Z = 85





215At

217At
218At
219At















Polonium Z = 84

210Po
211Po
212Po
213Po
214Po
215Po
216Po

218Po















Bismut Z = 83

209Bi
210Bi
211Bi
212Bi
213Bi
214Bi
215Bi

















Blei Z = 82 206Pb
207Pb
208Pb
209Pb
210Pb
211Pb
212Pb

214Pb

















Thallium Z = 81 205Tl
206Tl
207Tl
208Tl
209Tl
210Tl




















Quecksilber Z = 80

206Hg























Neutronenzahl N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
 
Legende:
Uran-Radium-Reihe
Uran-Actinium-Reihe
(Plutonium-) Thorium-Reihe
(Plutonium-)Neptunium-Reihe
(Pfeile nicht maßstäblich)
 
Fortsetzung
Fortsetzung
Fortsetzung
Fortsetzung
 

Historische Bezeichnungen

In der klassischen Zeit der Erforschung der radioaktiven Zerfallsreihen – also im frühen 20. Jahrhundert – wurden die verschiedenen Nuklide mit anderen Namen bezeichnet, an denen sich die Zugehörigkeit zu einer natürlichen Zerfallsreihe und die Ähnlichkeit in den Eigenschaften erkennen ließ (z. B. sind Radon, Thoron und Actinon allesamt Edelgase):[4]

Aktueller NameHistorischer NameLangversion des Namens
238UUIUran I
235UAcUActinuran
234UUIIUran II
234mPaUX2Uran X2
234PaUZUran Z
231PaPaProtactinium
234ThUX1Uran X1
232ThThThorium
231ThUYUran Y
230ThIoIonium
228ThRdThRadiothor
227ThRdAcRadioactinium
228AcMsTh2Mesothor 2
227AcAcActinium
228RaMsTh1Mesothor 1
226RaRaRadium
224RaThXThorium X
223RaAcXActinium X
223FrAcKActinium K
222RnRnRadon
220RnTnThoron
219RnAnActinon
218PoRaARadium A
216PoThAThorium A
215PoAcAActinium A
214PoRaC'Radium C'
212PoThC'Thorium C'
211PoAcC'Actinium C'
210PoRaFRadium F
214BiRaCRadium C
212BiThCThorium C
211BiAcCActinium C
210BiRaERadium E
214PbRaBRadium B
212PbThBThorium B
211PbAcBActinium B
210PbRaDRadium D
208PbThDThorium D
207PbAcDActinium D
206PbRaGRadium G
210TlRaC"Radium C"
208TlThC"Thorium C"
207TlAcC"Actinium C"

Die drei natürlichen Zerfallsreihen sähen in dieser alten Bezeichnungsweise folgendermaßen aus:

  • Uran-Radium-Reihe: UI → UX1 → UX2 (→ UZ) → UII → Io → Ra → Rn → RaA → RaB → RaC → RaC' (oder RaC") → RaD → RaE → RaF → RaG
  • Uran-Actinium-Reihe: AcU → UY → Pa → Ac → RdAc (oder AcK) → AcX → An → AcA → AcB → AcC → AcC" (oder AcC') → AcD
  • Thorium-Reihe: Th → MsTh1 → MsTh2 → RdTh → ThX → Tn → ThA → ThB → ThC → ThC' (oder ThC") → ThD

Berechnung der Konzentration von Nukliden einer Zerfallsreihe

Nuklide zerfallen nach einer Kinetik erster Ordnung (vgl. Zerfallsgesetz), so dass die zeitabhängige Konzentration eines einzelnen Nuklids recht einfach zu berechnen ist. Die Fragestellung wird deutlich komplizierter, wenn das Nuklid als Glied einer Zerfallsreihe aus Vorläufernukliden laufend nachgebildet wird. Ein kurzer und übersichtlicher Weg zur Berechnung seiner Konzentration unter dieser Voraussetzung findet sich bei Jens Christoffers (1986);[5] der Autor gibt auch einen Algorithmus zur Programmierung der Berechnung an.

Siehe auch

Commons: Zerfallsreihe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Karlsruher Nuklidkarte. Nachdruck der 6. Auflage. Karlsruhe 1998
  2. D. C. Hoffman, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: Detection of Plutonium-244 in Nature. In: Nature 234, 1971, S. 132–134, doi:10.1038/234132a0
  3. E. B. Paul: Nuclear and Particle Physics. North-Holland, 1969, S. 41
  4. C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes. 6. Auflage. Wiley & Sons, New York 1968
  5. https://www.uni-oldenburg.de/fileadmin/user_upload/chemie/ag/occhris/download/pdf1.pdf
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.