Teilchenphysik
Die Teilchenphysik widmet sich als Disziplin der Physik der Erforschung der Teilchen, insbesondere der Elementarteilchen. Beschränkte sich dies bis gegen Ende des 19. Jahrhunderts auf Moleküle und Atome, so liegt der Schwerpunkt heute auf den Elementarteilchen und Hadronen.
Inhalte
In der modernen Teilchenphysik werden physikalische Modelle vor allem durch Colliding-Beam-Experimente an Teilchenbeschleunigern überprüft, indem verschiedene Teilchen aufeinandergeschossen werden (beispielsweise Elektronen auf Positronen). Die entstehenden Reaktionsprodukte, deren Verteilung in den Teilchen- und Strahlungsdetektoren sowie die Energie- und Impulsbilanz geben Aufschluss über Eigenschaften schon bekannter oder vermuteter „neuer“ Teilchenarten.
Diese Experimente benötigen beschleunigte Teilchenstrahlen sehr hoher Energie. Deshalb wird oft von der Hochenergiephysik statt der Teilchenphysik gesprochen; diese Bezeichnung wird allerdings auch für schwerionenphysikalische Experimente bei hohen Energien benutzt.
Als nach und nach immer mehr Teilchen bekannt wurden, widmete man sich deren Ordnung nach ihren Eigenschaften und begann auch Vorhersagen über noch nicht beobachtete Teilchen aufzustellen. Der gegenwärtige Stand der Teilchenphysik – und viele ihrer Vorhersagen – ist im sogenannten Standardmodell zusammengefasst.
Standardmodell der Elementarteilchenphysik
Das heutige Wissen über die Elementarteilchen und ihre Wechselwirkungen wird im Standardmodell der Elementarteilchenphysik zusammengefasst. Das Standardmodell erlaubt eine konsistente Beschreibung der starken, der schwachen und der elektromagnetischen Wechselwirkung in Form von Quantenfeldtheorien.
Im Standardmodell existieren zwölf Teilchen und zwölf Antiteilchen, welche in Leptonen und Quarks unterteilt werden. Die Kräfte, welche zwischen diesen Teilchen wirken, werden durch den Austausch von Eichbosonen vermittelt. Für die elektromagnetische Wechselwirkung ist dies das masselose Photon, für die schwache Wechselwirkung sind dies die massiven W-Bosonen und das ebenfalls massive Z-Boson, während die starke Wechselwirkung durch acht masselose Gluonen vermittelt wird. Auch gibt es die Annahme, dass ein Graviton existieren könnte, welches die Gravitation vermittelt.
Ein wichtiger Unterschied gegenüber Vorstellungen der Alltagswelt und der klassischen Physik ist, dass das Standardmodell sehr stark holistisch geprägt ist. Verbinden sich mehrere Bausteine zu einem einzigen neuen Gegenstand, stellt man sich klassisch vor, dass die Bausteine im neuen Gegenstand noch vorhanden sind und dort weiterexistieren; bei einem Zerfall des neuen Gegenstandes erhält man wie beim Auseinanderbauen eines Lego-Modells wieder die ursprünglichen Bausteine. Auch im Standardmodell können zwei zusammenstoßende Teilchen (z. B. ein Elektron und ein Positron) sich zu einem einzigen (z. B. einem Photon) verbinden. Das neue Teilchen wird jedoch nicht als aus den beiden ursprünglichen zusammengesetzt gedacht, sondern ist wieder ein „unteilbares“ Elementarteilchen (d. h. ohne innere Struktur). Diese Vorstellung entspricht der Beobachtung, dass das neue Teilchen in Teilchen anderer Arten (z. B. Myonen) zerfallen kann als die, aus denen es entstanden ist.
Im Rahmen des Standardmodells wird zusätzlich das Higgs-Boson vorausgesagt. Die Forschungseinrichtung CERN hat im Juli 2012 den Nachweis eines Teilchens am Large Hadron Collider bekanntgegeben, bei dem es sich um das Higgs-Boson handeln könnte.[1] Dass es sich dabei tatsächlich um das Higgs-Boson handelt, gilt inzwischen als so bestätigt, dass Peter Higgs und François Englert für die Vorhersage des Higgs-Bosons den Nobelpreis für Physik 2013 erhielten.
Wäre der Nachweis des Higgs-Bosons auch mit diesem Teilchenbeschleuniger nicht gelungen, so hätte die Theorie von der Existenz des Teilchens verworfen werden müssen. Durch den Higgs-Mechanismus (der zwingend die Existenz des Higgs-Bosons bedingt) lässt sich theoretisch elegant erklären, warum (fast) alle anderen Teilchen nicht masselos (wie z. B. das Photon) sind, sondern eine Masse besitzen.
Es steht aus theoretischen Überlegungen fest, dass das Standardmodell oberhalb bestimmter Teilchenenergien keine korrekte Beschreibung der Welt liefern kann. Aus diesem Grund wurden auch ohne empirische Daten, die auf ein Versagen des Standardmodells hinweisen, Erweiterungen des Standardmodells entwickelt. Davon seien hier die Supersymmetrie und die Stringtheorie genannt.
Experimentelle Teilchenphysik
In der Teilchenphysik werden Streuexperimente durchgeführt, meist in Form von Colliding-Beam-Experimenten.
Die größten internationalen Labore für Teilchenphysik sind:
- CERN, an der französisch-schweizerischen Grenze nahe Genf. Die Hauptbeschleuniger sind der mittlerweile abgebaute LEP-Ring (Large Electron-Positron Collider) und der LHC (Large Hadron Collider).
- DESY in Hamburg (Deutschland). Hauptbeschleuniger war HERA (Außerbetriebnahme am 30. Juni 2007). Hier wurden Elektronen oder Positronen mit Protonen zur Kollision gebracht.
- SLAC, nahe Palo Alto (USA). Hauptbeschleuniger ist PEP-II, hier werden Elektronen mit Positronen zur Kollision gebracht.
- Fermilab, nahe Chicago (USA). Hauptbeschleuniger war das Tevatron (Außerbetriebnahme am 30. September 2011), das Protonen mit Antiprotonen zur Kollision brachte.
- Brookhaven National Laboratory, Long Island (USA). Hauptbeschleuniger ist der RHIC (Relativistic Heavy Ion Collider), der Schwerionen (z. B. Gold) oder Protonen zur Kollision bringt.
- KEK, Tsukuba (Japan). Hauptbeschleuniger ist KEKB, jetzt erweitert zum Beschleuniger SuperKEKB, für Untersuchungen von B-Mesonen.
Darüber hinaus gibt es viele weitere Teilchenbeschleuniger, welche je nach physikalischer Fragestellung in unterschiedlichen Energiebereichen arbeiten.
Vor der Entwicklung der Beschleuniger für den GeV-Energiebereich war die einzige Quelle hochenergetischer Teilchen die kosmische Strahlung, damals meist Höhenstrahlung genannt. Viele Teilchen, z. B. Myon, Pion, Kaon, wurden zuerst in der kosmischen Strahlung entdeckt. Dazu nutzte man Messungen auf Berggipfeln oder mit photoempfindlichen Platten, die von Freiballons getragen wurden.
Literatur
- G. Barr u. a.: Particle Physics in the LHC Era. Oxford University Press, 2016, ISBN 978-0-19-874855-7.
Weblinks
Einzelnachweise
- CERN experiments observe particle consistent with long-sought Higgs boson. Pressemitteilung von CERN, 4. Juli 2012, abgerufen am 15. Oktober 2012.