Nickelbasislegierung
Nickelbasislegierungen sind Werkstoffe, deren Hauptbestandteil Nickel ist und die mit mindestens einem anderen chemischen Element meist mittels eines Schmelzverfahrens erzeugt werden.
Eigenschaften und Zusammensetzung
Diese Legierungen verfügen über eine gute Korrosions- und/oder Hochtemperaturbeständigkeit (Kriechfestigkeit). Einige weisen spezielle physikalische Eigenschaften auf wie beispielsweise elektrischen Widerstand, eine kontrollierte thermische Ausdehnung, besondere magnetische Eigenschaften usw. Zur Verwendung kommen Nickel-Kupfer-, Nickel-Eisen-, Nickel-Eisen-Chrom-, Nickel-Chrom-, Nickel-Molybdän-Chrom-, Nickel-Chrom-Kobalt-, niedriglegierte Nickellegierungen (mit einem Nickelanteil von bis zu 99,9 %) und andere Mehrstofflegierungen. Die meisten Nickellegierungen sind nach internationalen Normen klassifiziert.
Anwendungsgebiete
Die Nickelwerkstoffe finden vielseitige Verwendung:
- chemische Industrie (z. B. Kessel, Wärmeübertrager, Ventile und Pumpen, chemische Reaktoren)
- Luftfahrt (z. B. Triebwerke, Turbinen, Befestigungsteile)
- Automobilindustrie (z. B. Ventiltechnik, Katalysatoren)
- Energieerzeugung (z. B. Kraftwerksgeneratoren)
- Öl- und Gasförderung (z. B. Bohrwerkzeuge)
- Umweltschutz und Abfallwirtschaft (z. B. Rauchgasentschwefelungsanlagen, Müllverbrennungsanlagen, Meerwasserentsalzungsanlagen)
- elektronische und haushaltstechnische Anwendungen (Heizleiterlegierungen, elektronische Schaltungen, Computerherstellung, Küchenmaschinen, Küchenherde)
Nickel-Kupfer-Legierungen werden für die Prägung, für industrielle Rohrleitungen und Ventile, in seefesten Komponenten, Kondensatorrohren, Wärmetauschern, Thermokupplern, Entsalzungsanlagen, Schiffsschrauben etc. eingesetzt. Nickel-Chrom-Legierungen werden für viele Hochtemperaturanwendungen eingesetzt, wie Öfen, Strahltriebwerksteile und Reaktionsgefäße. Molybdänhaltige Nickellegierungen zeichnen sich durch ihre Korrosionsbeständigkeit und thermische Stabilität aus und werden wie Nickel-Eisen-Chrom-Legierungen in nuklearen und fossilen Dampferzeugern, Lebensmittelverarbeitungsanlagen und chemischen Verarbeitungsanlagen zur Wärmebehandlung verwendet. Die Mehrzahl der Permanentmagnete sind aus Nickel-Gusseisenlegierungen (Mastromatteo, 1986) hergestellt. Die anderen Gruppen von Nickellegierungen werden nach ihren spezifischen Eigenschaften für säurebeständige Ausrüstungen, Heizelemente für Öfen, dehnungsarme Legierungen, Kryogene Anwendungen, die Lagerung von verflüssigten Gasen, Legierungen mit hoher Magnetpermeabilät und chirurgische Implantate und Prothesen verwendet.[1]
Herstellung
Nickellegierungen werden bevorzugt offen (an Luft) im Lichtbogenofen erschmolzen, teilweise auch im Induktionsschmelzverfahren, offen oder im Vakuum. Es schließt sich meist eine AOD-Behandlung (englisch argon oxygen decarburization) oder eine Umschmelzung nach dem Elektroschlacke-Umschmelzverfahren (ESU) an.[2]
Eine weitere Möglichkeit zur Herstellung ist mit dem so genannten mechanischen Legieren gegeben. Dabei wird mit hohem Energieeinsatz ein Gemisch aus Legierungspulver mit Oxiden vermischt, um auf diese Weise ein besonders homogenes und hochwarmfestes Gefüge zu erhalten.
Aus den so gegossenen Brammen werden durch Warm- und eventuell anschließender Kaltwalzschritte Bleche und Bänder hergestellt und Stäbe geschmiedet oder gewalzt. Rohre werden in speziellen Rohrreduzierwerken aus Blöcken oder in Pilgerrohrwalzwerken aus Luppen hergestellt, Drähte in Drahtwalz- oder -ziehwerken.
Superlegierungen
Superlegierungen auf der Basis von Nickel bezeichnen Legierungen mit einer besonderen Zusammensetzung, die speziell für Hochtemperaturanwendungen (z. B. im Triebwerksbau) produziert werden.
Der Hauptvorteil der Nickelbasis-Superlegierungen besteht in ihren Kriech- und Ermüdungsfestigkeiten bei hohen Temperaturen. Ab etwa 550 °C sind sie diesbezüglich den Warmarbeitsstählen überlegen. Die Härtung durch intermetallische Phasen bewirkt, dass Nickelbasis-Superlegierungen bis nahe an ihren Schmelzpunkt eingesetzt werden können und in diesem Temperaturbereich selbst Refraktärmetalle übertreffen. Die Festigkeit wird dabei in der Regel durch Zulegieren von Aluminium und/oder Titan erreicht. Die entstehenden Ni3[Al,Ti]-Ausscheidungen nehmen bei höheren Legierungsgehalten eine charakteristische blockförmige Struktur an. In der kommerziell am weitesten verbreiteten Legierung IN718 findet die Aushärtung durch Ni3Nb-Ausscheidungen statt. Das Kriechen wird durch Korngrenzennetzwerke von M23C6-Karbiden verhindert.
Da außerdem ihre Korrosionsbeständigkeit durch Bildung einer undurchlässigen Oxidschicht sehr hoch ist, sind sie die erste Wahl für Konstruktionswerkstoffe in Gasturbinen von Kraftwerken und in Flugzeugturbinen. Dabei werden für die Turbinenscheiben einfache Schmiedebauteile und für die Turbinenschaufeln höher legierte Gussbauteile eingesetzt, die meist gerichtet und als Einkristall hergestellt werden. Solche Turbinenschaufeln können mit Hilfe von Beschichtungen und interner Luftkühlung sogar bei Umgebungstemperaturen jenseits des Schmelzpunkts ihrer Legierung (etwa 1200 °C) eingesetzt werden.
Beispiele
Alloy 718
Hersteller | Special Metals Corporation, VDM Metals |
---|---|
Werkstoffnummer / UNS-Nummer | 2.4668 / N07718 |
Kurzname | NiCr19NbMo |
Dichte | 8,19 g/cm³ |
Chemische Zusammensetzung: 0,04 % C; 19 % Cr; 3,0 % Mo; 52,5 % Ni; 0,9 % Al; ≤0,1 % Cu; 5,1 % Nb; 0,9 % Ti; 19 % Fe.[2]
Diese mit Ni3[Nb,V]-Ausscheidungen verstärkte Superlegierung macht noch heute 60–70 % des Volumens aller Nickelbasislegierungen aus.
Alloy 600
Hersteller | Special Metals Corporation, VDM Metals, BGH Edelstahl Freital |
---|---|
Werkstoffnummer / UNS-Nummer | 2.4816 / N06600 |
Kurzname | NiCr15Fe |
Gute Widerstandsfähigkeit gegenüber allgemeiner Korrosion und Spannungsrisskorrosion. Hervorragende Oxidationsbeständigkeit bis ca. 1150 °C. Nicht einsetzbar oberhalb 550 °C in schwefelhaltiger Atmosphäre. In Kohlendioxid liegt die Einsatzgrenze bei 500 °C, da ab 650 °C starke Korrosion einsetzt. In Natrium sollte Alloy 600 nicht oberhalb 750 °C eingesetzt werden, da ab dieser Temperatur Materialabbau erfolgt. In chlorfreiem Wasser bis 590 °C verwendbar.[2]
Mit allen bekannten Schweißverfahren gut schweißbar. Vor dem Schweißen sollte geglüht werden. Gut löt- und hartlötbar. Sehr gute Duktilität. Als hoch nickelhaltige Legierung besitzt Alloy 600 bei hoher Temperatur sehr gute mechanische Eigenschaften. Da es sich um einen weichen, zähen Werkstoff handelt, wird die spanabhebende Verarbeitung erleichtert, wenn das Material nicht im geglühten, sondern im walzharten Zustand bearbeitet wird.
Alloy 600 ist Standardwerkstoff für den Bau von Druckwasserreaktoren, Ofenbau, Synthetikfaserherstellung, Glaswannenabzüge, Kunststoffindustrie, Papierherstellung, Nahrungsmittelverarbeitung, Dampfkessel, Destillationskolonnen sowie Flugmotoren.
Einzelnachweise
- iarc.fr: IArc Monograph Nickel and Nickelcompounds, abgerufen am 29. Juni 2016
- Joseph R. Davis: Nickel, Cobalt, and Their Alloys. ASM International, 2000, ISBN 978-0-87170-685-0, S. 200 (eingeschränkte Vorschau in der Google-Buchsuche).
- Datenblatt Alloy 718. Abgerufen am 14. Januar 2022.
- Datenblatt Alloy 600. Abgerufen am 14. Januar 2022.