Kurve (Mathematik)
In der Mathematik ist eine Kurve (von lateinisch curvus „gebogen, gekrümmt“) ein eindimensionales Objekt. Im Gegensatz etwa zu einer Geraden muss eine Kurve grundsätzlich keinen geraden, sondern kann vielmehr jeden beliebigen Verlauf annehmen.
Eindimensional bedeutet dabei informell, dass man sich auf der Kurve nur in eine Richtung (bzw. in die Gegenrichtung) bewegen kann. Ob die Kurve in der zweidimensionalen Ebene liegt („ebene Kurve“) oder in einem höherdimensionalen Raum (siehe Raumkurve), ist in diesem begrifflichen Zusammenhang unerheblich.
Je nach Teilgebiet der Mathematik gibt es unterschiedliche Präzisierungen dieser Beschreibung.
Parameterdarstellungen
Eine Kurve kann als das Bild eines Weges definiert werden. Ein Weg ist (abweichend von der Umgangssprache) eine stetige Abbildung von einem Intervall in den betrachteten Raum, also z. B. in die euklidische Ebene .
Beispiele:
- Die Abbildung
- beschreibt den Einheitskreis in der Ebene.
- Die Abbildung
- beschreibt eine Kurve mit einem einfachen Doppelpunkt bei , entsprechend den Parameterwerten und .
Gelegentlich, insbesondere bei historischen Bezeichnungen, wird zwischen Weg und Kurve nicht unterschieden. So ist die interessante Struktur bei der Hilbert-Kurve der Weg; das Bild dieses Weges ist das Einheitsquadrat, besitzt also keinerlei fraktale Struktur mehr.
Durch die Parameterdarstellung erhält die Kurve einen Richtungssinn in der Richtung des wachsenden Parameters.[1][2]
Gleichungsdarstellungen
Eine Kurve kann auch durch eine oder mehrere Gleichungen in den Koordinaten beschrieben werden. Beispiele dafür sind wieder die Bilder der beiden durch die obigen Parameterdarstellungen gegebenen Kurven:
- Die Gleichung
- beschreibt den Einheitskreis in der Ebene.
- Die Gleichung
- beschreibt die oben in Parameterdarstellung angegebene Kurve mit Doppelpunkt.
Ist die Gleichung wie hier durch ein Polynom gegeben, nennt man die Kurve algebraisch.
Funktionsgraphen
Funktionsgraphen sind ein Spezialfall beider oben angegebenen Formen: Der Graph einer Funktion
kann entweder als Parameterdarstellung
oder als Gleichung
angegeben werden.
Wird in der Schulmathematik von Kurvendiskussion gesprochen, so meint man üblicherweise nur diesen Spezialfall.
Differenzierbare Kurven, Krümmung
Sei ein Intervall und eine reguläre Kurve, d. h. für alle . Die Länge der Kurve ist
Die Funktion
ist ein Diffeomorphismus , und die Verkettung von mit dem inversen Diffeomorphismus liefert eine neue Kurve mit für alle . Man sagt: ist nach der Bogenlänge parametrisiert.
Sei ein Intervall und eine nach der Bogenlänge parametrisierte Kurve. Die Krümmung von an der Stelle ist definiert als . Für ebene Kurven kann man die Krümmung noch mit einem Vorzeichen versehen: Ist die Drehung um 90°, dann ist festgelegt durch . Positive Krümmung entspricht Linkskurven, negative Rechtskurven.
Geschlossene Kurven
Sei eine ebene Kurve. Sie heißt geschlossen, wenn , und einfach geschlossen, wenn zusätzlich auf injektiv ist. Der Jordansche Kurvensatz besagt, dass eine einfach geschlossene Kurve die Ebene in einen beschränkten und einen unbeschränkten Teil zerlegt. Ist eine geschlossene Kurve mit für alle , kann man der Kurve eine Umlaufzahl zuordnen, die angibt, wie oft die Kurve um den Nullpunkt herumläuft.
Glatten geschlossenen Kurven kann man eine weitere Zahl zuordnen, die Tangentenumlaufzahl, die für eine nach der Bogenläge parametrisierte Kurve durch
gegeben ist. Der Umlaufsatz von Heinz Hopf besagt, dass eine einfache geschlossene Kurve Tangentenumlaufzahl oder hat.
Sei allgemein ein topologischer Raum. Statt von geschlossenen Wegen mit spricht man auch von Schleifen mit Basispunkt . Weil der Quotientenraum homöomorph zum Einheitskreis ist, identifiziert man Schleifen mit stetigen Abbildungen . Zwei Schleifen mit Basispunkt heißen homotop, wenn man sie unter Beibehaltung des Basispunkts stetig ineinander deformieren kann, d. h. wenn es eine stetige Abbildung mit , für alle und für alle gilt. Die Äquivalenzklassen homotoper Schleifen bilden eine Gruppe, die Fundamentalgruppe von . Ist , dann ist die Fundamentalgruppe über die Windungszahl isomorph zu .
Raumkurven
Sei ein Intervall und eine nach der Bogenlänge parametrisierte Kurve. Die folgenden Bezeichnungen sind Standard:
(definiert, wann immer ). ist der Tangentialvektor, der Normalenvektor und der Binormalenvektor, das Tripel heißt begleitendes Dreibein. Die Krümmung ist , die Windung definiert durch . Es gelten die frenetschen Formeln:
Der Hauptsatz der lokalen Kurventheorie besagt, dass man eine Kurve aus Krümmung und Windung rekonstruieren kann: Sind glatte Funktionen mit für alle (der Wert 0 ist für also nicht erlaubt), so gibt es bis auf Bewegungen genau eine entsprechende Kurve.
Die von je zwei der drei Vektoren , oder aufgespannten Ebenen durch den Kurvenpunkt tragen besondere Namen:[3]
- Die Oskulationsebene oder Schmiegebene wird von und aufgespannt.
- Die Normalebene wird von und aufgespannt.
- Die rektifizierende Ebene oder Streckebene wird von und aufgespannt.
Kurven als eigenständige Objekte
Kurven ohne umgebenden Raum sind in der Differentialgeometrie relativ uninteressant, weil jede eindimensionale Mannigfaltigkeit diffeomorph zur reellen Geraden oder zur Einheitskreislinie ist. Auch Eigenschaften wie die Krümmung einer Kurve sind intrinsisch nicht feststellbar.
In der algebraischen Geometrie und damit zusammenhängend in der komplexen Analysis versteht man unter „Kurven“ in der Regel eindimensionale komplexe Mannigfaltigkeiten, oft auch als Riemannsche Flächen bezeichnet. Diese Kurven sind eigenständige Studienobjekte, das prominenteste Beispiel sind die elliptischen Kurven. Siehe Kurve (algebraische Geometrie)
Historisches
Das erste Buch der Elemente von Euklid begann mit der Definition „Ein Punkt ist, was keine Teile hat. Eine Kurve ist eine Länge ohne Breite.“
Diese Definition lässt sich heute nicht mehr aufrechterhalten, denn es gibt zum Beispiel Peano-Kurven, d. h. stetige surjektive Abbildungen , die die gesamte Ebene ausfüllen. Andererseits folgt aus dem Lemma von Sard, dass jede differenzierbare Kurve den Flächeninhalt null, also tatsächlich wie von Euklid gefordert „keine Breite“ hat.
Literatur
- Ethan D. Bloch: A First Course in Geometric Topology and Differential Geometry. Birkhäuser, Boston 1997.
- Wilhelm Klingenberg: A Course in Differential Geometry. Springer, New York 1978.
Weblinks
Einzelnachweise
- H. Neunzert, W.G. Eschmann, A. Blickensdörfer-Ehlers, K. Schelkes: Analysis 2: Mit einer Einführung in die Vektor- und Matrizenrechnung. Ein Lehr- und Arbeitsbuch. 2. Auflage. Springer, 2013, ISBN 978-3-642-97840-1, 23.5 (eingeschränkte Vorschau in der Google-Buchsuche).
- H. Wörle, H.-J. Rumpf, J. Erven: Taschenbuch der Mathematik. 12. Auflage. Walter de Gruyter, 1994, ISBN 978-3-486-78544-9 (eingeschränkte Vorschau in der Google-Buchsuche).
- W. Kühnel: Differentialgeometrie. Vieweg-Verlag, 1999, ISBN 978-3-8348-0411-2, Absatz 2.9.