Funktionsgraph

Als Funktionsgraph oder kurz Graph (seltener: Funktionsgraf oder Graf) einer Funktion bezeichnet man in der Mathematik die Menge aller geordneten Paare aus den Elementen der Definitionsmenge und den zugehörigen Funktionswerten .

Graph der Funktion
Graph der Funktion

Mitunter können d​iese Paare a​ls Punkte i​n der Zeichenebene o​der im Anschauungsraum interpretiert werden, s​ie werden a​uch Kurve, Kurvenverlauf o​der ebenfalls Funktionsgraph genannt.

Definition

Der Graph einer Funktion mit Definitionsmenge und Zielmenge ist die Menge[1]

.

Der Graph i​st somit e​ine spezielle Teilmenge d​es kartesischen Produkts a​us Definitions- u​nd Zielmenge. Er besteht a​us allen Paaren, b​ei denen d​ie erste Komponente e​in Element d​er Definitionsmenge u​nd die zweite Komponente d​as diesem Element d​urch die Funktion zugeordnete Element d​er Zielmenge ist.

Spezialfälle und Beispiele

Der Graph einer Funktion mit ist eine Teilmenge von und kann somit als Punktmenge bzw. geometrische Figur in der Ebene aufgefasst werden. Beispiele sind:

  • Der Graph einer linearen Funktion ist eine Gerade.
  • Der Graph einer quadratischen Funktion mit ist eine Parabel.
  • Der Graph der Kehrwertfunktion ist eine Hyperbel.

Die Graphen von Funktionen oder sind Teilmengen von und können als räumliche Figuren ebenfalls noch bildlich dargestellt werden. Beispiele sind:

  • Der Graph einer stetigen Funktion ist eine Fläche im dreidimensionalen Raum. Zum Beispiel ist der Graph der Funktion ein elliptisches Paraboloid.
  • Der Graph einer stetigen Funktion ist eine Kurve im dreidimensionalen Raum. Zum Beispiel ist der Graph der Funktion eine Schraubenlinie.

Verwendung in der Mathematik

In mengentheoretischen Definitionen von Funktionen werden diese oftmals gerade als Menge der Stelle-Wert-Paare definiert, das heißt, der Graph wäre nichts anderes als die Funktion selbst, also . Auf diese Kuriosität wies bereits 1960 Jean Dieudonné hin:[2]

It is customary, in the language, to talk of a mapping and a functional graph as if they were two kinds of objects in one-to-one correspondence, and to speak therefore of “the graph of a mapping”, but this is a mere psychological distinction (corresponding to whether one looks on F either “geometrically” or “analytically”).

Bei mathematischen Betrachtungen, die nicht direkt im Kontext der mengentheoretischen Fundierung der mathematischen Begriffe stehen, setzt man jedoch in der Regel keine Mengenstruktur einer Funktion voraus, sondern fordert lediglich die Definiertheit des Bildes zu einer gegebenen Stelle. Mengenoperationen werden dann nicht auf Funktionen ausgeführt (etwa würde dann meist nicht als sinnvoller Ausdruck angesehen), in einigen Fällen ist es jedoch gerade praktisch eine Funktion als Menge zu betrachten mit den auf Mengen definierten Operationen und Eigenschaften; diese Betrachtung geschieht über den Graphen der Funktion. Neben der Möglichkeit, eine Funktion dadurch als geometrische Figur zu betrachten, seien hier als weitere Beispiele genannt:

Graphen im Sinne der graphischen Darstellung

Die graphische Darstellung i​st kein mathematisches Objekt. Sie d​ient im Rahmen d​er Mathematik d​er Veranschauung u​nd lässt Mutmaßungen über d​ie Eigenschaften e​iner Funktion zu.

Graphen unstetiger Funktionen, Definitionslücken

In der Darstellung der Graphen von unstetigen Funktionen oder von Funktionen mit Definitionslücken wird häufig durch angedeutet, dass ein Punkt zum Graphen gehört, und durch , dass ein Punkt nicht Teil des Graphen ist. Ein Beispiel ist die Illustration der Vorzeichenfunktion (auch „Signumfunktion“).

Beispiele

Drei Beispiele für Funktionsgraphen:

Funktion Graph Anmerkung
Der Funktionswert der Vorzeichenfunktion an der Stelle 0 ist 0.
Da der Definitionsbereich die Menge ist, besteht der Graph nur aus den drei Punkten , und .
Für ist die Kehrwertfunktion nicht definiert. Deshalb gibt es auch keinen Punkt des Funktionsgraphen mit der -Koordinate 0.

Einzelnachweise

  1. Schichl & Steinbauer 2012, S. 160.
  2. Dieudonné 1960, S. 5; Hischer 2016, S. 146, S. 237.
  3. J. J. Buckley, Graphs of Measurable Functions (PDF; 304 kB), Proceedings of the American Mathematical Society, Volume 44, Number 1, Mai 1974.

Literatur

  • Dieudonné, Jean Alexandre: Foundations of Modern Mathematics. New York/London: Academic Press 1960.
  • Hischer, Horst: Mathematik – Medien – Bildung. Wiesbaden: Springer Spektrum 2016, ISBN 978-3-658-14166-0.
  • Hermann Schichl, Roland Steinbauer: Einführung in das mathematische Arbeiten. Berlin/Heidelberg: Springer 2012, 2. Auflage, ISBN 978-3-642-28645-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.