Diffeomorphismus

In d​er Mathematik, insbesondere i​n den Gebieten Analysis, Differentialgeometrie u​nd Differentialtopologie, i​st ein Diffeomorphismus e​ine bijektive, stetig differenzierbare Abbildung, d​eren Umkehrabbildung a​uch stetig differenzierbar ist.

Dabei können die Definitions- und Zielbereiche der Abbildung offene Mengen des endlichdimensionalen reellen Vektorraums sein oder allgemeiner differenzierbare Mannigfaltigkeiten. Je nach Differenzierbarkeitsklasse spricht man von -Diffeomorphismen ().

Bild eines rechtwinkligen Netzes auf einem Quadrat unter einem Diffeomorphismus vom Quadrat auf sich selbst.

Definition

Im Vektorraum

Eine Abbildung zwischen offenen Teilmengen des reellen Vektorraums heißt Diffeomorphismus, falls gilt:

Sind und sogar -mal stetig differenzierbar („von der Klasse “, ), so nennt man einen -Diffeomorphismus. Sind und beliebig oft differenzierbar („von der Klasse “), so bezeichnet man als -Diffeomorphismus. Sind und beide reell-analytisch („von der Klasse “), so nennt man einen -Diffeomorphismus.

Eine Abbildung zwischen offenen Teilmengen heißt lokaler Diffeomorphismus, falls jeder Punkt eine offene Umgebung besitzt, so dass deren Bild offen und die Einschränkung von auf ein Diffeomorphismus ist.

Auf differenzierbaren Mannigfaltigkeiten

Auf differenzierbaren Mannigfaltigkeiten w​ird der Begriff analog definiert:

Eine Abbildung zwischen zwei differenzierbaren Mannigfaltigkeiten und heißt Diffeomorphismus, falls sie bijektiv ist und sowohl als auch die Umkehrabbildung stetig differenzierbar sind. Wie oben werden die Begriffe -, - und -Diffeomorphismus und lokaler Diffeomorphismus definiert.

Zwei Mannigfaltigkeiten und heißen diffeomorph, falls es einen Diffeomorphismus von nach gibt. Mannigfaltigkeiten, die diffeomorph sind, unterscheiden sich bezüglich ihrer differenzierbaren Struktur nicht.

Damit i​st die Diffeomorphie gerade d​ie Isomorphie i​n der Kategorie d​er differenzierbaren Mannigfaltigkeiten.

Eigenschaften

  • Ein Diffeomorphismus ist immer auch ein Homöomorphismus, die Umkehrung gilt aber nicht.
  • Aus der Differenzierbarkeit der Umkehrabbildung folgt, dass in jedem Punkt die Ableitung von (als lineare Abbildung von nach bzw. vom Tangentialraum nach ) invertierbar (bijektiv, regulär, von maximalem Rang) ist.
  • Ist umgekehrt die Abbildung bijektiv und (-mal) stetig differenzierbar und ist ihre Ableitung an jeder Stelle invertierbar, so ist ein ()-Diffeomorphismus.

Eine stärkere Aussage enthält d​er Satz über d​ie Umkehrabbildung:

Satz über die Umkehrabbildung

Eine differenzierbare Abbildung mit invertierbarem Differential ist lokal ein Diffeomorphismus. Genauer formuliert:

Sei stetig differenzierbar und die Ableitung von sei an der Stelle invertierbar. Dann existiert eine offene Umgebung von in , so dass offen und die Einschränkung ein Diffeomorphismus ist.

Diese Aussage gilt sowohl für Abbildungen zwischen offenen Mengen des als auch für Abbildungen zwischen Mannigfaltigkeiten.

Beispiele

  • Die Abbildung , wobei , ist ein Diffeomorphismus zwischen der offenen Menge und der Menge der reellen Zahlen . Damit ist das offene Intervall diffeomorph zu .
  • Die Abbildung , , ist bijektiv und differenzierbar. Sie ist aber kein Diffeomorphismus, denn ist an der Stelle 0 nicht differenzierbar.

Diffeomorphie und Homöomorphie

Bei differenzierbaren Mannigfaltigkeiten i​n Dimension kleiner 4 impliziert Homöomorphie i​mmer Diffeomorphie: Zwei differenzierbare Mannigfaltigkeiten d​er Dimension kleiner o​der gleich 3, d​ie homöomorph sind, s​ind auch diffeomorph. D. h., w​enn es e​inen Homöomorphismus gibt, d​ann gibt e​s auch e​inen Diffeomorphismus. Dies bedeutet nicht, d​ass jeder Homöomorphismus e​in Diffeomorphismus wäre.

In höheren Dimensionen ist dies nicht unbedingt der Fall. Ein prominentes Beispiel sind die Milnor-Sphären, nach John Willard Milnor: Sie sind homöomorph zur normalen 7-dimensionalen Sphäre, aber nicht diffeomorph. Für diese Entdeckung erhielt Milnor 1962 die Fields-Medaille.

Literatur

  • Klaus Jänich: Vektoranalysis. 5. Auflage. Springer Verlag, Berlin u. a. 2005, ISBN 3-540-23741-0 (Springer-Lehrbuch).
  • D. K. Arrowsmith, C. M. Place: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge u. a. 1990, ISBN 0-521-30362-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.