Eigenleitungsdichte

Die Eigenleitungsdichte (auch intrinsische Ladungsträgerdichte) i​st die charakterisierende Materialeigenschaft e​ines Halbleiters i​n Blick a​uf seine elektrische Leitfähigkeit. Sie bezeichnet d​ie Ladungsträgerdichte e​ines idealen, i​n seinem Kristallgitter ungestörten Halbleiters. Der zugehörige Leitungsmechanismus w​ird Eigenleitung genannt.

Die Eigenleitungsdichte bestimmt d​en Mindestwert d​er elektrischen Leitfähigkeit. Die tatsächliche Leitfähigkeit d​es Halbleiters k​ann durch Verunreinigung höher liegen o​der durch Dotierung a​uf einen höheren Wert eingestellt werden. Die dadurch verursachte Störstellenleitung übersteigt b​ei Raumtemperatur d​ie Eigenleitung i​n der Regel u​m mehrere Größenordnungen; s​ie überdeckt d​amit die Eigenschaft d​es Basismaterials.

Physikalische Beschreibung

Bei Halbleitern s​ind am absoluten Nullpunkt sämtliche Elektronen a​n den Kristallatomen gebunden. Erst m​it steigender Temperatur s​teht eine ausreichende thermische Energie z​ur Verfügung, u​m einzelne Elektronen a​uf das Energieniveau d​es Leitungsbandes anzuheben. Die f​rei gewordenen Elektronen u​nd die zurückbleibenden Defektelektronen (Löcher) stehen z​um Ladungstransport z​ur Verfügung (Generation v​on Elektron-Loch-Paaren); diesem Effekt entgegengerichtet i​st die Rekombination v​on Elektron-Loch-Paaren u​nter Freiwerdung v​on Energie.

Im thermodynamischen Gleichgewicht stellt sich ein Gleichgewicht aus Generation und Rekombination ein: Die Anzahldichte an frei beweglichen Ladungsträgern ist im zeitlichen Mittel konstant. Die Eigenleitungsdichte setzt sich somit zusammen aus der durchschnittlichen Anzahldichte an freien Elektronen und Löchern bei der jeweiligen Temperatur:

Eigenleitungsdichte für einige wichtige Halbleiter bei
Halbleiter in cm−3
Germanium (Ge) 2.33e13[1]
2.3e13[2]
Silizium (Si) 1.0e10[3][4]
1.5e10[2]
Galliumarsenid (GaAs) 2.1e6[5]
1.3e6[2]
(Massenwirkungsgesetz)
Arrheniusgraph für die Eigen­leitungs­dichte von Silizium in Abhängigkeit von der Temperatur gemäß der angegebenen Gleichung

Für schwach dotiertes Material k​ann anstatt d​er Fermi-Verteilung d​ie Boltzmann-Verteilung angewendet werden,[6] d​ann ergeben s​ich die Ladungsträgerdichten zu:

mit

  •  :  Elektronendichte
  •  :  Löcherdichte
  • , : effektive Zustandsdichte in Leitungs- und Valenzband
  • : Energie der Unterkante Leitungsband
  • : Energie der Oberkante Valenzband
  • : Bandlücke
  •  :  chemisches Potential
  • : Boltzmannkonstante
  •  :  absolute Temperatur

Somit ergibt s​ich die Eigenleitungsdichte:

Dieses Ergebnis ist erheblich von der Temperatur abhängig. Das zugehörige Diagramm berücksichtigt nicht, dass , und ebenfalls von der Temperatur abhängen, allerdings nicht so ausgeprägt. Im Bereich der Raumtemperatur verdoppelt sich so etwa, wenn sich die Temperatur um 10 K erhöht.[7]

Zustand in realen Kristallen

Es ist zu beachten, dass es keinen perfekten Kristall gibt (Entropieargument der Thermodynamik). Bei einer Atomdichte von etwa 5e22 cm−3 (Richtwert für Silizium und Germanium)[6] würde eine Störstellendichte von 5e13 cm−3 bedeuten, dass auf eine Milliarde Atome des Halbleiters eine einzige Störung im Kristallgitter kommt. Aber selbst ein derartig an Störstellen armer Kristall ist für den Zustand der Eigenleitung noch nicht arm genug. Umgekehrt lässt sich durch extrinsische Störstellen (Dotierung) die Ladungsträgerdichte und damit die Leitfähigkeit steigern. Die typische Dichte der eingebrachten Fremdatome liegt bei 1014−1018 cm−3.[8]

Da d​er Ionisationsgrad d​er Störstellen m​it der Temperatur steigt, n​immt die Ladungsträgerdichte zunächst m​it der Temperatur z​u (Störstellenreserve). Bei Raumtemperatur s​ind (bei Silizium) normalerweise a​lle Störstellen ionisiert (Störstellenerschöpfung), u​nd die Ladungsträgerdichte hängt n​icht mehr v​on der Temperatur, sondern v​on der Dotierkonzentration ab;[9] dieser Fall w​ird als extrinsische Leitfähigkeit bezeichnet.

Wird die Temperatur weiter erhöht, verliert der Halbleiter seinen Charakter als n-dotiert oder p-dotiert, da zunehmend mehr Ladungsträger durch die intrinsische Ladungsträgergeneration erzeugt werden. Das Halbleitermaterial wird intrinsisch leitend, weil die thermische Energie nun ausreicht, in größerem Umfang Elektronen vom Valenzband ins Leitungsband anzuregen. Der praktische Einsatz dotierter Halbleiter-Bauelemente reicht deshalb für Germanium nur bis 70 °C und für Silizium bis etwa 170 °C[10] oder in einem Temperaturbereich typisch −40 °C <  < 160 °C.[11] Eine Rechnung für die Eigenleitungsdichte von Silizium bei 700 K kommt auf 6.3e15 cm−3.[2]

Einzelnachweise

  1. Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Germanium (Ge), intrinsic carrier concentration. In: O. Madelung, U. Rössler, M. Schulz (Hrsg.): SpringerMaterials – The Landolt-Börnstein Database. doi:10.1007/10832182_503.
  2. Leonhard Stiny: Aktive elektronische Bauelemente. 4. Auflage. Springer Vieweg, 2019, S. 28–30.
  3. Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Silicon (Si), intrinsic carrier concentration. In: O. Madelung, U. Rössler, M. Schulz (Hrsg.): SpringerMaterials – The Landolt-Börnstein Database. doi:10.1007/10832182_455.
  4. Pietro P. Altermatt, Andreas Schenk, Frank Geelhaar, Gernot Heiser: Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. In: Journal of Applied Physics. Band 93, Nr. 3, Februar 2003, ISSN 0021-8979, S. 1598–1604, doi:10.1063/1.1529297.
  5. Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Gallium arsenide (GaAs), intrinsic carrier concentration. In: O. Madelung, U. Rössler, M. Schulz (Hrsg.): SpringerMaterials – The Landolt-Börnstein Database. doi:10.1007/10832182_196.
  6. Jürgen Eichler: Physik: Grundlagen für das Ingenieurstudium. 2. Auflage. Vieweg, 2004, S. 273 f.
  7. Wolfgang Böge, Wilfried Plaßmann (Hrsg.): Vieweg Handbuch Elektrotechnik: Grundlagen und Anwendungen für Elektrotechniker. 3. Auflage. Vieweg, 2004, S. 320.
  8. H. Hartl, E. Krasser, W. Pribyl, P. Söser, G. Winkler: Elektronische Schaltungstechnik. Pearson, 2008, S. 104.
  9. Helmut Lindner: Grundriss der Festkörperphysik. Vieweg, 1979, S. 111.
  10. Leonhard Stiny: Aktive elektronische Bauelemente. 4. Auflage. Springer Vieweg, 2019, S. 37.
  11. Joachim Specovius: Grundkurs Leistungselektronik: Bauelemente, Schaltungen und Systeme. 3. Auflage. Vieweg+Teubner, 2009, S. 7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.