Differenzierbare Mannigfaltigkeit

In d​er Mathematik s​ind differenzierbare Mannigfaltigkeiten e​in Oberbegriff für Kurven, Flächen u​nd andere geometrische Objekte, d​ie – a​us der Sicht d​er Analysis – l​okal aussehen w​ie ein euklidischer Raum. Im Unterschied z​u topologischen Mannigfaltigkeiten i​st es a​uf differenzierbaren Mannigfaltigkeiten möglich, über Ableitungen u​nd verwandte Konzepte z​u sprechen. Differenzierbare Mannigfaltigkeiten s​ind Hauptgegenstand d​er Differentialgeometrie u​nd der Differentialtopologie. Sie spielen a​uch eine zentrale Rolle i​n der theoretischen Physik, insbesondere i​n der klassischen Mechanik b​ei Systemen, d​ie Zwangsbedingungen unterliegen, u​nd bei d​er Beschreibung d​er Raumzeit i​n der allgemeinen Relativitätstheorie.

Es g​ibt zwei Herangehensweisen a​n differenzierbare Mannigfaltigkeiten:

Die Äquivalenz d​er beiden Sichtweisen w​ird durch d​en Einbettungssatz v​on Whitney sichergestellt.

Definitionen

Differenzierbarer Atlas

Die Grafik illustriert einen Kartenwechsel der Karten und . Der große Kreis symbolisiert den topologischen Raum und die zwei unteren kleineren Kreise symbolisieren Teilmengen des .

Eine Karte eines topologischen Raums ist ein Paar bestehend aus einer in offenen, nichtleeren Menge und einem Homöomorphismus

.

Sind und zwei Karten von mit , so nennt man die Abbildung

einen Kartenwechsel.

Ein Atlas für ist dann eine Familie von Karten ( ist eine Indexmenge), so dass

gilt. Man nennt einen Atlas -differenzierbar mit , wenn alle seine Kartenwechsel -Diffeomorphismen sind.

Differenzierbare Struktur

Zwei -differenzierbare Atlanten sind äquivalent, wenn auch ihre Vereinigung ein -differenzierbarer Atlas ist. Eine Äquivalenzklasse von Atlanten bezüglich dieser Äquivalenzrelation wird -differenzierbare Struktur der Mannigfaltigkeit genannt.

Ist , so spricht man auch von einer glatten Struktur.

Differenzierbare Mannigfaltigkeit

Eine -mal differenzierbare Mannigfaltigkeit ist ein topologischer Hausdorffraum, der das zweite Abzählbarkeitsaxiom erfüllt, zusammen mit einer -differenzierbaren Struktur.

Die differenzierbare Mannigfaltigkeit hat die Dimension , wenn eine Karte und damit alle Karten in eine Teilmenge des abbilden.

Glatte Mannigfaltigkeit

Eine glatte Mannigfaltigkeit i​st ebenfalls e​in topologischer Hausdorffraum, d​er das zweite Abzählbarkeitsaxiom erfüllt, zusammen m​it einer glatten Struktur.

Auf glatten Mannigfaltigkeiten kann man Funktionen auf Glattheit untersuchen, was natürlich bei -mal differenzierbaren Mannigfaltigkeiten nicht möglich ist, da dort eben der Kartenwechsel nur -mal differenzierbar ist und man deshalb jede Funktion auf der Mannigfaltigkeit nur höchstens -mal differenzieren kann. Oftmals betrachten Differentialgeometer nur die glatten Mannigfaltigkeiten, da man für diese etwa dieselben Resultate erhält wie für die -mal differenzierbaren, aber nicht verwalten muss, wie oft man die Kartenwechsel noch differenzieren darf.

Komplexe Mannigfaltigkeit

Komplexe Mannigfaltigkeiten s​ind ebenfalls glatt, allerdings m​it dem Zusatz, d​ass die Kartenwechsel zusätzlich biholomorph sind.

Beispiele

Die zweidimensionale Sphäre
  • Der euklidische Vektorraum kann auch als -dimensionale differenzierbare Mannigfaltigkeit verstanden werden. Einen differenzierbaren Atlas bestehend aus einer Karte erhält man mittels der identischen Abbildung.
  • Das wahrscheinlich einfachste, aber nichttriviale Beispiel einer differenzierbaren Mannigfaltigkeit ist die -dimensionale Sphäre. Die zweidimensionale Sphäre kann man sich als Hülle einer Kugel vorstellen. Einen differenzierbaren Atlas der Sphäre erhält man schon mit Hilfe von zwei Karten beispielsweise mit Hilfe der stereographischen Projektion. Auf der Sphäre ist es allerdings je nach Dimension möglich, unterschiedliche nicht kompatible differenzierbare Atlanten zu definieren.

Differenzierbare Abbildungen, Wege und Funktionen

Sind eine -dimensionale und eine -dimensionale -Mannigfaltigkeit, so nennt man eine stetige Abbildung eine -Abbildung oder -mal stetig differenzierbar (kurz: differenzierbar), wenn dies für ihre Kartendarstellungen (das sind dann Abbildungen von nach ) gilt.

Im Detail: Ist eine Karte von und eine Karte von mit , so nennt man

eine Kartendarstellung von (bezüglich der beiden Karten).

Die Abbildung heißt nun von der Klasse oder -mal stetig differenzierbar, wenn alle Kartendarstellungen von der Klasse sind. Die Differenzierbarkeit hängt dabei nicht von der Wahl der Karten ab. Dies ergibt sich daraus, dass die Kartenwechselabbildungen -Diffeomorphismen sind, und aus der mehrdimensionalen Kettenregel. Stetigkeit von folgt nicht aus der Differenzierbarkeit, sondern muss vorausgesetzt werden, damit die Karten so gewählt werden können, dass gilt.

Abbildungen von der Klasse , die also beliebig oft differenzierbar sind, werden auch als glatte Abbildungen bezeichnet.

Die Fälle bzw. sind auch möglich. In diesem Fall kann dort auf die Karten verzichtet werden.

Eine differenzierbare Abbildung von einem Intervall in eine Mannigfaltigkeit heißt Weg oder parametrisierte Kurve. Ist der Zielraum , so spricht man von einer differenzierbaren Funktion auf .

Eine Abbildung heißt lokaler -Diffeomorphismus, wenn die Karten so gewählt werden können, dass die Kartendarstellungen von Diffeomorphismen sind. Ist außerdem bijektiv, so nennt man einen -Diffeomorphismus.

Um tatsächlich eine Ableitung für Abbildungen zwischen differenzierbaren Mannigfaltigkeiten definieren zu können, braucht man eine zusätzliche Struktur, den Tangentialraum. Für die Definition der Ableitung einer differenzierbaren Abbildung zwischen Mannigfaltigkeiten siehe Tangentialraum und Pushforward.

Eigenschaften

  • Auf einer zusammenhängenden differenzierbaren Mannigfaltigkeit operiert die Diffeomorphismengruppe transitiv, das heißt für alle gibt es einen Diffeomorphismus , sodass gilt.
  • Die Klasse der -Mannigfaltigkeiten bildet zusammen mit der Klasse der -Abbildungen eine Kategorie.
  • Differenzierbare Mannigfaltigkeiten sind triangulierbar, was für topologische Mannigfaltigkeiten im Allgemeinen nicht gilt.

Untermannigfaltigkeiten

Eine -dimensionale Untermannigfaltigkeit einer -dimensionalen Mannigfaltigkeit () ist eine Teilmenge, die in geeigneten Karten so erscheint wie ein -dimensionaler linearer Unterraum des . Diese besitzt in kanonischer Weise eine differenzierbare Struktur.

Im Detail: Eine Teilmenge einer -dimensionalen differenzierbaren Mannigfaltigkeit ist eine -dimensionale Untermannigfaltigkeit, falls es zu jedem Punkt eine Karte um gibt, so dass

Dabei wird der als aufgefasst; die „0“ auf der rechten Seite ist die 0 von . Solche Karten heißen Schnittkarten. Diese definieren auf auf natürliche Weise eine differenzierbare Struktur, die mit der differenzierbaren Struktur von verträglich ist: Identifiziert man mit , so ist die Einschränkung der Schnittkarte auf eine Karte von und die Menge aller so erhaltenen Karten bildet einen differenzierbaren Atlas von .

Einbettungssatz von Whitney

Der Einbettungssatz von Whitney besagt, dass es zu jeder -dimensionalen differenzierbaren Mannigfaltigkeit eine Einbettung gibt, die mit einer abgeschlossenen Untermannigfaltigkeit des identifiziert. Das Konzept der abstrakten differenzierbaren Mannigfaltigkeit unterscheidet sich von dem der Untermannigfaltigkeit im also nur in der Anschauung, aber nicht in seinen mathematischen Eigenschaften.

Klassifikation

Eine topologische Mannigfaltigkeit i​st ein Hausdorffraum, d​er das zweite Abzählbarkeitsaxiom erfüllt, zusammen m​it einem Atlas. Unter Umständen i​st es möglich, z​um Beispiel d​urch Reduktion d​er Karten i​m Atlas e​inen differenzierbaren Atlas z​u erhalten u​nd somit d​ie topologische Mannigfaltigkeit z​u einer differenzierbaren Mannigfaltigkeit z​u erweitern. Jedoch k​ann nicht für j​ede topologische Mannigfaltigkeit e​ine differenzierbare Struktur gefunden werden. Unter Umständen i​st es a​ber sogar möglich a​uf einer topologischen Mannigfaltigkeit nichtäquivalente differenzierbare Atlanten z​u finden. Es g​ibt also a​uch topologische Mannigfaltigkeiten, a​uf denen m​an verschiedene differenzierbare Strukturen finden kann. Aus Sicht d​er Differentialgeometrie handelt e​s sich d​ann um z​wei unterschiedliche Mannigfaltigkeiten, während e​s sich i​n der Topologie n​ur um e​in Objekt handelt.[1]

Bei der Klassifikation von differenzierbaren Mannigfaltigkeiten untersucht man die Frage, wie viele unterschiedliche differenzierbare Strukturen auf einer differenzierbaren Mannigfaltigkeit existieren. Einfacher ausgedrückt, wählt man eine differenzierbare Mannigfaltigkeit, betrachtet von dieser nur die topologische Struktur und untersucht wie viele verschiedene differenzierbare Strukturen existieren, die diese zu einer differenzierbaren Mannigfaltigkeit machen. Für differenzierbare Mannigfaltigkeiten der Dimension kleiner als vier gibt es (bis auf Diffeomorphie) nur eine differenzierbare Struktur. Für alle Mannigfaltigkeiten der Dimension größer als vier existieren endlich viele verschiedene differenzierbare Strukturen. Mannigfaltigkeiten der Dimension vier sind bezüglich der differenzierbaren Strukturen außergewöhnlich. Der als einfachstes Beispiel einer nicht kompakten vierdimensionalen differenzierbaren Mannigfaltigkeit hat überabzählbar viele verschiedene differenzierbare Strukturen, der mit hat hingegen genau eine differenzierbare Struktur.[2] Bei der vierdimensionalen Sphäre hingegen ist im Gegensatz zu anderen "kleineren" Dimensionen noch nicht bekannt wie viele differenzierbare Strukturen diese trägt. Die folgende Tabelle enthält die Zahl der differenzierbaren Strukturen auf den Sphären bis zur Dimension 12:[1]

Dimension123456789101112
Anzahl der differenzierbaren Strukturen111 ?11282869921

Unendlichdimensionale Mannigfaltigkeiten

Die hier vorgestellten Mannigfaltigkeiten sehen lokal aus wie der endlichdimensionale Raum , somit sind diese Mannigfaltigkeiten per Definition endlichdimensional.

Es gibt aber in der Literatur auch mehrere Ansätze, unendlichdimensionale differenzierbare Mannigfaltigkeiten zu definieren. Üblicherweise ersetzt man in der Definition den Raum durch einen lokalkonvexen topologischen Vektorraum (den sogenannten Modellraum), wie zum Beispiel einen Fréchet-Raum, einen Banachraum oder einen Hilbertraum. Man spricht dann von lokalkonvexen Mannigfaltigkeiten, Fréchet-Mannigfaltigkeiten, Banach-Mannigfaltigkeiten oder Hilbert-Mannigfaltigkeiten. Eine solche Definition ist natürlich erst sinnvoll, wenn man sich darauf geeinigt hat, wie man differenzierbare und -Abbildungen zwischen unendlichdimensionalen lokalkonvexen Räumen definiert. Während dies für Banachräume relativ unkritisch ist (Fréchet-Ableitung), gibt es für beliebige lokalkonvexe Räume unterschiedliche, nicht äquivalente Ansätze.

Beispiele für unendlichdimensionale Mannigfaltigkeiten:

  • die Einheitssphäre in einem Hilbertraum ist eine -Hilbert-Mannigfaltigkeit.
  • die Gruppe der unitären Operatoren auf einem Hilbertraum ist eine -Banach-Mannigfaltigkeit.
  • die Gruppe der Diffeomorphismen des Einheitskreises ist eine -Fréchet-Mannigfaltigkeit.

Literatur

  • John M. Lee: Introduction to Smooth Manifolds. 2. Auflage. Springer, New York 2003, ISBN 0-387-95448-1 (englisch).
  • R. Abraham, J. E. Marsden, T. Ratiu: Manifolds, Tensor Analysis, and Applications. 2. Auflage. Springer, Berlin 1988, ISBN 3-540-96790-7 (englisch).

Einzelnachweise

  1. M. I. Voitsekhovskii: Differentiable manifold. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).Vorlage:EoM/id
  2. Felix Hausdorff: Gesammelte Werke. Hrsg.: Egbert Brieskorn. Band II: Grundzüge der Mengenlehre. Springer Verlag, Berlin u. a. 2002, ISBN 3-540-42224-2, S. 72.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.