Differenzengleichung (Differenzenverfahren)

Eine Differenzengleichung ist eine numerisch lösbare rekursive Berechnungsvorschrift für eine diskret definierte Folge von nummerierten Folgeelementen bzw. Stützstellen im Abstand eines meist konstanten Intervalls oder bei zeitabhängigen Systemen .

Differenzengleichungen werden z​ur numerischen Berechnung i​n vielen wissenschaftlichen Disziplinen – w​ie Wirtschaft, Medizin, Technik, Elektrotechnik, Regelungstechnik, Kybernetik, Informatik, Akustik u​nd andere – eingesetzt.

Eine Differenzengleichung steht in enger Beziehung zu einer Differentialgleichung. Die Differenzengleichung entsteht z. B., wenn der Differenzialquotient einer zu berechnenden Differenzialgleichung durch einen Differenzenquotient ausgetauscht wird. Durch diesen Vorgang entsteht automatisch das rekursive Verhalten der Differenzengleichung, bei der sich je nach Ordnung jedes aktuelle Folgeelement sich auf ein oder mehrere zurückliegende Folgeelemente bezieht.

Grundlagen der Differenzengleichungen

In der numerischen Mathematik werden zur Behandlung und Lösung von meist gewöhnlichen Differenzialgleichungen die kontinuierlichen Funktionswerte in Abhängigkeit von konstanten Intervallen hintereinander berechnet. Eine Differenzengleichung (auch Rekursionsgleichung genannt) ist eine Gleichung, die anstelle eines Differenzialquotienten einen Differenzenquotienten enthält. Sie ist von n-ter Ordnung, wenn die höchste Ordnung der vorkommenden Differenzen gleich ist.

Die nachfolgende Beschreibung des Artikels bezieht sich auf das Einschrittverfahren zur Lösung von gewöhnlichen Differenzialgleichungen 1. und 2. Ordnung und den Differenzialgleichungen dynamischer Systeme mit den Ein- und Ausgangsfolgen in Abhängigkeit von der Zeit.

Zu d​en bekanntesten einfachsten Einschrittverfahren b​ei Differenzengleichungen gehört d​es explizite Eulerverfahren z​ur numerischen Lösung v​on Anfangswertproblemen.

siehe auch Explizites Euler-Verfahren

siehe auch Implizites Euler-Verfahren

siehe auch Lineare Differenzengleichung

  • Folgen
Bei einer Differenzengleichung handelt es sich um eine rekursive Folge von nummerierten Elementen, also um eine Aufzählung von Zahlen. Rekursiv bedeutet in der Mathematik: jedes Folgeelement bezieht sich bei einer Differenzengleichung 1. Ordnung auf das zurückliegende Folgeelement.
Eine Differenzengleichungen höherer Ordnung verknüpft die Werte der Ausgangsfolgen an zwei, drei oder mehreren zurückliegenden Zeitpunkten:
.
Je nach Art der Differenzialgleichung und der zugehörigen Differenzengleichung erhalten die Eingangs- und Ausgangsfolgeglieder der Differenzengleichung für die Nummerierung die Indizierung .
  • Numerische Lösung:
Die numerische Lösung einer Differenzengleichung erfolgt rekursiv über viele Berechnungsfolgen und stellt sich meist als eine tabellarisch geordnete Aufstellung von System-Ausgangsfolgen (Stützstellen, Knoten) in Abhängigkeit der Bezugsgröße dar.
Bei dynamischen Systemen besteht die Abhängigkeit der Ausgangsgröße von der Eingangsfolge und dem Zeitschritt . Die Eingangsfolge hat keine rekursive Beziehung zu einem zurückliegendem Folgeglied .
  • Schrittweite :
Im Gegensatz zu einem kontinuierlichen Signalverlauf ist bei einem zeitdiskreten Signal die Größe der Signalinformation nur zu bestimmten Zeitpunkten definiert. Die Differenz von 2 benachbarten Zeitpunkten wird als Schrittweite definiert.
Die Anzahl der Folgeglieder ist bei zeitabhängigen Systemen durch den gewünschten Darstellungszeitraum und die Genauigkeit der Approximation an die analytische Funktion durch die gewünschte Schrittweite der Folgeglieder bestimmt. Je kleiner ist, umso größer ist die Genauigkeit der Berechnung.
Die Lösung der Differenzengleichung stellt sich als eine tabellarische Folge mit allen relevanten Größen wie die Folge k, zunehmende diskrete Zeit: , Ausgangsfolge , Eingangsfolge dar.
Die Tabellengröße (Zeilen) wird bestimmt durch die Anzahl der Folgeglieder. Es gilt die Beziehung:
ist der Darstellungszeitraum, Schrittzeit.
  • Variablen:
Einfache gewöhnliche Differenzialgleichungen haben als abhängige Variable die Größe und als unabhängige Variable die Größe .
Bei Differenzialgleichungen von dynamischen Systemen bzw. gewöhnlichen Differenzialgleichungen mit konstanten Koeffizienten werden die physikalischen Größen als Ausgangsvariable , die Eingangsvariable und die unabhängige Variable definiert.

Definitionen d​er Ein- u​nd Ausgangsfolgen:

  • ist ein nummeriertes Element (Folgeglied) der rekursiven Ausgangsfolge des Systems mit . Jedes rekursive Folgeglied einer Differenzengleichung 1. Ordnung bezieht sich auf ein zurückliegendes Folgeglied .
  • ist ein nummeriertes Element der Eingangsfolge des Systems mit . Die Eingangsfolge ist nicht rekursiv, sie kann z. B. eine normierte Sprungfunktion für alle Eingangsfolgen sein, oder die Ausgangsfolge eines anderen vorgeschalteten dynamischen Systems oder eine Tabelle sein.
  • entspricht dem nächsten beliebig nummerierten Folgeglied nach einem Rechenschritt .
  • entspricht einem zurückliegenden beliebig nummeriertem Folgeglied vor einem Rechenschritt .

Einfache Differenzengleichungen mit einer Ausgangsvariablen in Abhängigkeit von der Zeit

Für einfache numerische Berechnungen wie Zinseszins, Bevölkerungswachstum, Flüssigkeit in Behältern entleeren / füllen, liegen keine Differenzialgleichungen vor. Für diese Aufgaben müssen die rekursiven Folgeglieder von einem Anfangswert ausgehend für die unabhängige Variable , der Anzahl der Folgeglieder , der Zeitschrittweite , bestimmt werden. Sie enthält die Wertefolgen einer Variablen zu steigenden oder fallenden Zeitpunkten. Aus jedem zurückliegenden Folgeglied wird das nächste Folgeglied errechnet.

Dabei w​ird bei d​en Folgegliedern unterschieden:

  • Bei der arithmetischen Folge wächst oder fällt jedes Folgeglied um einen festen Betrag. (Beispiel: Sparschwein)
  • Bei der exponentiellen Folge wächst oder fällt jedes Folgeglied um einen relativen Anteil. (Beispiel: Zinseszins)

Für einen derartigen Typ Differenzengleichung lässt sich der Wert einer beliebigen Folge direkt algebraisch aus dem Anfangswert berechnen.

Die zugehörige Gleichung als Folge mit dem Verlauf einer Exponentialfunktion mit im Exponenten lautet:

Dabei ist eine Konstante und die Schrittweite.

Sie entspricht a​uch der Formel z​ur Berechnung v​on Zinseszins:

Kapital

Der Wachstumsfaktor für e​ine steigende Funktion e​iner Folge lautet:

Beispiel einer Differenzengleichung zur numerischen Berechnung des Bevölkerungswachstums

Beispiel des Wachstums der Bevölkerung für 50 Jahre in Abhängigkeit von der Geburten- und Sterberate

Gegeben:

  • Stand der Bevölkerung eines Staates zu Beginn: Millionen
  • Konstantes Bevölkerungswachstum (Geburtenrate - Sterberate): pro Jahr
  • Die Schrittweite beträgt Jahr
  • Anfangswert: Millionen am Anfang des ersten Jahres

Gesucht:

  • Aufstellung der Differenzengleichung,
  • Entwicklung der Bevölkerungszahl nach 50 Jahren

Differenzengleichung:

ist hier der Wachstumsfaktor pro Folgeglied.

Entwicklung d​er Folgeglieder d​urch Differenzengleichungen o​der durch Exponentialdarstellung:

kJahrBevölkerung in Millionen
00
11
22
33
5050

Für d​iese Differenzengleichung k​ann für j​ede Folge a​uch die exponentielle Form benutzt werden:

Die Ergebnisse der Folgegleichungen ergeben Stützstellen mit exponentiellem Wachstum.

Anmerkung: Ein m​it dieser linearen Differenzengleichung berechnetes ungebremstes Wachstum w​ird es i​n der Praxis n​icht geben, w​eil andere Einflüsse w​ie z. B. Nahrungsmittelknappheit dagegen wirken.

Anfangswertproblem

Die Lösung einer gewöhnlichen Differenzialgleichung 1. Ordnung ergibt in der Regel eine allgemeine Lösung in Form einer Funktionenschar mit unendlich vielen Lösungen mit ähnlichem Verhalten. Die Lösung eines Anfangswertproblems ist die Lösung der Differentialgleichung unter zusätzlicher Berücksichtigung eines Anfangswertes. Kennt man den Anfangszustand der Differenzialgleichung mit dem Anfangswert der unabhängigen Variablen für , ergibt sich die spezielle Lösung der Differenzialgleichung.

Bei gewöhnlichen Differenzialgleichungen k​ann durch Integration d​ie Stammfunktion m​it der Integrationskonstante C gebildet werden. Stammfunktion u​nd Integrationskonstante müssen für e​ine exakte Lösung errechnet werden. Andere Methoden z​ur Lösung d​es Anfangswertproblems beschreiben e​ine Funktionenschar multiplikativ m​it dem Scharparameter C.[1][2]

  • In vielen Anwendungsfällen findet sich keine geschlossene Lösung der Differenzialgleichung, man ist daher auf numerische Verfahren angewiesen.
  • Der Anfangswert für wird für die Lösung des Anfangswertproblems immer vorgegeben.

Als historisch einfachstes Verfahren z​ur Herleitung d​er Differenzengleichungen w​ird meistens d​as explizite Euler-Streckenzugverfahren genannt.[3][4]

Wird die Ableitung einer gewöhnlichen Differenzialgleichung durch den Vorwärts-Differenzenquotienten ersetzt,

entsteht die explizite Differenzengleichung .

Allgemeine Form d​er Differenzengleichung 1. O. n​ach dem Vorwärts-Differenzenquotienten (entspricht: "Euler-Vorwärts"):

Je kleiner die Schrittweite ist, umso geringer sind die Integrationsfehler. Andere Verfahren z. B. das Trapezverfahren von Heun oder das Runge-Kutta-Verfahren ermöglichen eine größere Schrittweite bei gleicher Genauigkeit.

Berechnungsbeispiel für das numerische Lösen einer linearen Differenzialgleichung 1. Ordnung

Differenzialgleichung: ergibt nach der Integration:[5]

Analytische Lösung vorgegeben: .
Anfangswert gewählt.
Als Schrittweite wird: gewählt.
Gesucht: Differenzengleichung mit Vorwärts-Differenzenquotient, Entwicklung der Folgeglieder.
Entwicklung: Differenzengleichung durch Austausch Differentialquotient gegen Differenzenquotient:
Differenzengleichung:

Gerechnet wurde mit der Tabellenkalkulation mit 15-Dezimalstellen-Genauigkeit,
für

Lösung einer gewöhnlichen Differenzialgleichung 1. O. mit Anfangswert nach dem Differenzenverfahren

Entwicklung d​er Folgeglieder d​er Differenzengleichung:

kDifferenzengleichung
Analytische Funktion
00 Anfangswert
1
2
3
4
50

Fallschirmspringer

Die nichtlineare Bewegungsgleichung für d​en Fall m​it Luftwiderstand lautet:

Daten:[6]

Reibungskoeffizient:Masse:Erdbeschleunigung:Schrittweite:
c = 0,32 kg/mm = 80 kgg = 10 m/s²1 s und 0,01 s

Gesucht: Differenzengleichung, Geschwindigkeit der Masse .

Differenzengleichung (Vorwärtsdifferenzenquotient):

, Anfangswert:

Entwicklung d​er Folgeglieder d​er Differenzengleichung b​ei einer Schrittweite v​on 1 s:

Fallgeschwindigkeit einer Masse mit Luftreibung als Funktion der Zeit
kZeit
[s]
Fallgeschwindigkeit
00
11 = 10
22
33
1818

Die Ergebnisse der Folgegleichungen ergeben Stützstellen mit asymptotischem Verlauf. Die Fallgeschwindigkeit nimmt ab nicht mehr zu. Die Fallstrecke nach der Fallzeit 13 s beträgt etwa 478 m (mit h = 0,01 s gerechnet).

Mathematisches Pendel

Mit dem zweiten Newtonschen Gesetz lässt sich die Bewegungsgleichung eines mathematischen Pendels für den Auslenkungswinkel herleiten:

,

mit Erdbeschleunigung und Pendellänge.

Diese Differentialgleichung 2. Ordnung w​ird nach d​er höchsten Ableitung aufgelöst:

.

Durch die Substitution wird die Differentialgleichung zweiter Ordnung in ein System von 2 Differentialgleichungen erster Ordnung umgewandelt:

,
Mathematisches Pendel, numerische Lösung

aus der wie folgt Differenzengleichungen abgeleitet werden. Die erste Differentialgleichung für die Winkelgeschwindigkeit kann mit dem expliziten Eulerverfahren integriert werden:

Anfangswert:

Bei der Integration der zweiten Differentialgleichung kann die zuvor berechnete Winkelgeschwindigkeit verwendet werden (Euler rückwärts) was die Genauigkeit erheblich verbessert. Bei der nochmaligen Anwendung des expliziten Euler-Verfahrens würde sich eine aufklingende (instabile) Lösung ergeben.

Anfangswert:

Das folgende Skript z​eigt die Berechnung i​n gnuplot:

set print 'osz.dat'
h=0.04
l=0.6
x=0
omega=0; phi=60*pi/180
print x, omega, phi

do for [k=1:100] {
  x=k*h
# Integration
  omega=omega-9.81/l*sin(phi)*h
  phi=phi+omega*h

  print x, omega, phi*180/pi
}
unset print

plot 'osz.dat' using 1:3 title "Numerische Lösung"

Differenzenverfahren für die Bildung von Differenzengleichungen über Differenzenquotienten

Gewöhnliche lineare Differenzialgleichungen, d​ie z. B. e​in dynamisches System 1. Ordnung wie:

beschreiben, können n​ach dem Differenzenverfahren relativ einfach i​n eine Differenzengleichung überführt werden. Dies geschieht dadurch, d​ass die Differenzialquotienten d​er Differenzialgleichung direkt d​urch die verschiedenen Formen d​er Differenzenquotienten ausgetauscht werden. Damit entsteht automatisch d​ie rekursive Differenzengleichung.[7]

Der Vorwärts-Differenzenquotient einer Differenzengleichung mit der Schrittweite lautet:

Für differenzierende Systeme bezieht sich der Differenzenquotient auf das Eingangssignal :

Rückwärts-Differenzenquotient e​iner Differenzengleichung:

Für differenzierende Systeme bezieht sich der Differenzenquotient auf das Eingangssignal .

Zentraler Differenzenquotient e​iner Differenzengleichung:

Wird der zentrale Differenzenquotient in eine Differenzialgleichung eingesetzt, handelt es sich nicht um einen arithmetischen Mittelwert zweier Verfahren. Die hohe Genauigkeit der Annäherung an eine analytische Funktion steigt nicht mit fallendem Wert von , sondern mit dem Quadrat des fallenden Wertes von .

Besonderheit: Die angenäherte diskrete Lösung der Differenzengleichung verläuft nicht unterhalb oder oberhalb der analytischen Funktion. Sie „schlängelt“ sich im Abstand von um die analytische Funktion.

Differenzialgleichungen und Differenzengleichungen dynamischer Systeme G(s)

Blockdiagramm einer Übertragungsfunktion als Ein- und Mehrgrößensystem.

Lineare dynamische Systeme werden meist als Übertragungsfunktion beschrieben. Sie gelten für den für "Ruhezustand" des Systems mit dem Anfangswert Null und haben einen hohen Bekanntheitsgrad.

Lineare inhomogene Differenzialgleichungen können bei linearen dynamischen Systemen aus der Übertragungsfunktion G(s) mit Hilfe der inversen Laplace-Transformation ermittelt werden. Sie enthalten die abhängigen Variablen und . Die unabhängige Variable ist die Zeit .

Laut der Systemtheorie existieren nur 6 verschiedene Formen von phasenminimalen Übertragungsfunktionen , die einfach oder mehrfach bei dynamischen Systemen vorkommen können. Durch die inverse Laplace-Transformation ergeben sich mit Hilfe des Laplace-Differentiationssatzes Differenzialgleichungen 1. und 2. Ordnung als phasenminimale Elementarsysteme.

Ein Totzeitglied ist ein in der Praxis häufig vorkommendes lineares Übertragungsglied. Es entsteht durch Laufzeiten von Material oder Signalen. Die zugehörige Laplace-Transformierte ist keine gebrochene rationale Funktion, wie bei allen anderen linearen Übertragungsgliedern. Es ist aber numerisch leicht zu behandeln.

Tabelle wichtiger regulärer (phasenminimaler) Übertragungsfunktionen i​n Zeitkonstanten-Darstellung:

Benennung I-Glied
Integration
(ideales) D-Glied
Differentiation
(ideales) PD1-Glied
Proportional-Differential
PT1-Glied
Verzögerung
PT2kk-Glied
Verzög. 2.Ord. konj. kompl.
Totzeitglied
Differenzialgleichung
*)

*)

Differenzialgleichung
existiert nicht
Übertragungsfunktion
Sprungantwort
(Übergangsfunktion)

Es handelt sich hier nicht um eine Differenzialgleichung, sondern um eine Funktionsgleichung mit einer Ableitung des Eingangssignals. Diese Funktionsgleichungen entstehen durch die inverse Laplace-Transformation der zugehörigen Übertragungsfunktionen G(s).

Die Übertragungsfunktionen funktionsmäßig hintereinander geschalteter Systeme kompensieren sich bei gleichen Parametern vollständig zum Faktor 1, wenn z. B. ein Verzögerungsglied PT1-Glied mit einem "idealen" PD1-Glied hintereinander geschaltet sind. Das gleiche Verhalten muss auch für alle Folgeglieder der Differenzengleichungen gelten.

Ideales Element: Beim D-Glied u​nd PD-Glied g​ilt für e​in System, dessen Übertragungsfunktion i​m Zähler e​ine höhere Ordnung a​ls im Nenner aufweist (Nullstellenüberschuss), a​ls Hardware (ohne Verzögerungselement) n​icht realisierbar. Ideale D- u​nd PD-Glieder lassen s​ich mit Differenzengleichungen vortrefflich berechnen.

Die 6. Form des dynamischen Systems wurde nicht dargestellt, weil unbedeutend.

Siehe Regler#PD2-Glied mit konjugiert komplexen Nullstellen

Herleitung von Differenzengleichungen für lineare dynamische Systeme

Die Differenzengleichungen 1. Ordnung n​ach den Verfahren d​es Vorwärts-Differenzenquotienten u​nd des Rückwärts-Differenzenquotienten unterscheiden s​ich in d​er tabellarischen Anordnung n​ur durch e​ine Berechnungsfolge.[8]

Beim Verfahren nach dem Vorwärts-Differenzenquotienten stehen nur die Ausgangsvariablen und zur Verfügung. Gesucht wird die Differenzengleichung nach .

Beim Verfahren nach dem Rückwärts-Differenzenquotienten stehen nur die Ausgangsvariablen und zur Verfügung. Gesucht wird die Differenzengleichung nach .

Bei dem Vorwärts-Verfahren wird für und dem 1. Folgeglied ein Anfangswert zugeordnet. Erst das zweite Folgeglied mit und alle weiteren Folgeglieder werden aus der Differenzengleichung rekursiv berechnet.

Das Rückwärtsverfahren berechnet mit der betreffenden Differenzengleichung ab und alle Folgeglieder des dynamischen Systems. Entsprechend dem rekursiven Verfahren erhöht oder vermindert sich jedes Folgeglied für einen Zeitschritt um einen konstanten Betrag in Abhängigkeit von den Systemparametern. Dies bedeutet, dass das 1. Folgeglied bei bereits einen kleinen Wert, je nach Größe von erhält, obwohl der Anfangswert des Systems den Wert z. B. Null haben sollte.

Mit d​er nachfolgenden Aufstellung d​er Differenzengleichungen d​er Übertragungsglieder G(s) erster Ordnung lassen s​ich alle linearen Systeme höherer Ordnung zerlegen. Nach d​er Nullstellenanalyse v​on DGL höherer Ordnung entstehen unabhängige Systeme 1. O. u​nd bei Systemen m​it konjugiert komplexen Nullstellen unabhängige Systeme 2. Ordnung. Mit d​er Anwendung v​on Zustandsvariablen können a​lle DGL höherer Ordnung i​n gekoppelte DGL 1. Ordnung überführt werden.

Differenzengleichungen lassen s​ich mit j​eder Programmiersprache einschließlich Tabellenkalkulation anwenden.

Das Ergebnis ist eine tabellarisch gespeicherte Folge von Berechnungswerten (Stützstellen) der Ausgangs- und Eingangsfolgen sowie der Zeit eines Systems 1. Ordnung im zeitlichen Abstand . Ebenso können mehrere hintereinander wirkende dynamische Systeme berechnet werden, wobei die Ausgangsfolgen eines Systems die Eingangsfolgen des nachgeschalteten Systems bedeuten.

  • Beispiel der Herleitung einer Differenzengleichung für ein PT1-Glied mit dem Vorwärts-Differenzenquotienten:
Sprungantworten eines PT1-Gliedes der Methoden Rückwärts- und Vorwärts-Differenzenquotienten
Der Differenzialquotient der Differenzialgleichung des PT1-Gliedes wird durch den Differenzenquotient ersetzt mit folgendem Ansatz:
Diese Gleichung wird nach aufgelöst.
Die Differenzengleichung des PT1-Gliedes lautet mit dem Vorwärts-Differenzenquotienten:
Die analytische Lösung des PT1-Gliedes lautet:
  • Beispiel der Herleitung einer Differenzengleichung für ein PT1-Glied mit dem Rückwärts-Differenzenquotienten:[9]
Der Differenzialquotient der Differenzialgleichung des PT1-Gliedes wird durch den Differenzenquotient ersetzt mit folgendem Ansatz:
Diese Gleichung wird nach aufgelöst.
Die Differenzengleichung des PT1-Gliedes lautet mit dem Rückwärts-Differenzenquotienten:
Differenzengleichung des PT1-Gliedes in vereinfachter Schreibweise mit identischer mathematischer Funktion:
  • Beispiel der Herleitung einer Differenzengleichung für ein differenzierendes Element wie das D-Glied oder PD1-Glied:
Diese einfachen Differenzengleichungen entstehen durch Austausch der Ableitung der zugehörigen Funktionsgleichung durch einen entsprechenden Differenzenquotienten.
Beispiel: Differenzialgleichung PD1-Glied (Methode Vorwärts-Differenzenquotienten):

Tabelle Differenzengleichungen von Übertragungssystemen G(s) erster Ordnung nach dem Differenzenverfahren

Elementar-

systeme

Übertragungs-

funktion

Differenzengleichung

Differenzenquotient Rückwärts

Differenzengleichung

Differenzenquotient Vorwärts

P-Glied
Proportional
I-Glied
Integration
PT1-Glied
Verzögerung
D-Glied
Differentiation
PD1-Glied
Propotional-Diff.

(Mit = Verstärkungsfaktor, = aktuelle zeitdiskrete Ausgangsgröße, = vorherige Ausgangsgröße, = Zeitkonstante, = aktuelle zeitdiskrete Eingangsgröße)

Lineare dynamische Systeme mit der Übertragungsfunktion sind laut Definition der Systemtheorie auf den Anfangswert festgelegt. Damit ist das zeitliche Systemverhalten für gegebene Eingangssignale bzw. eindeutig bestimmt.

Die dargestellten beiden Arten d​er Differenzengleichungen erfüllen d​ie Bedingung d​er vollständigen Kompensation (Aufhebung) v​on Folgegliedern v​on verzögernden Systemen m​it differenzierenden Systemen (z. B. PD1-Glied kompensiert PT1-Glied).

Tabellarische Definition der Folgeglieder von Differenzengleichungen am Beispiel der numerischen Integration

  • Die Folgebezeichnungen , , sind relative Begriffe der Nummerierung. Sie haben erst eine absolute Bedeutung, wenn die Folge des ersten Folgegliedes der Differenzengleichung mit der Ausgangsgröße zugeordnet wird.
  • Von den beiden Verfahren der Bildung von Differenzengleichungen nach den Vorwärts-Differenzenquotienten und dem Rückwärts-Differenzenquotienten ist das Verfahren nach dem Rückwärts-Differenzenquotienten vorzuziehen.
  • Das Verfahren Rückwärts-Diff. ist bei einer geringeren Anzahl der Folgeglieder stabiler und genauer.
  • Die Berechnung mit mehreren hintereinander wirkenden dynamischen Systemen mit Differenzengleichungen hat Rückwärts-Diff. eindeutige Vorteile der Genauigkeit gegenüber Vorwärts-Diff., weil Anfangswerte mit zu zeitlichen Verzögerungen führen.
  • Differenzengleichungen nach dem Verfahren des Rückwärts-Diff. können auch mit einem Anfangswert starten, wenn die Eingangserregung bei ist und für weitere Folgen ist.
  • Einfache Differenzialgleichungen ohne Eingangserregung vom Typ: starten bei beiden Verfahren von einem Anfangswert bei .

Differenzengleichung n​ach dem Vorwärts-Differenzenquotient für 3 Wertefolgen:

Beispiel Differenzialgleichung (Funktionsgleichung) der Integration 1. Ordnung: ; .
Spalte A
-
Spalte B
Folge k
Spalte C
Zeitfolge t
Spalte D
Signal
Spalte E
Differenzengleichung
Zeile 500 = Anfangswert
Zeile 511
Zeile 522
Anmerkung zur Tabelle: Werden die Eingangssignale in der Integrationsfunktion (Vorwärts-Differenzenquotient) anstatt nun (Spalte E) verwendet, ergibt sich ein verbessertes Rechenergebnis für . Dieser Vorteil reduziert sich linear mit kleiner werdendem .

Differenzengleichung n​ach dem Rückwärts-Differenzenquotient für 3 Wertefolgen:

Beispiel Differenzialgleichung (Funktionsgleichung) der Integration 1. O.: .
Spalte A
-
Spalte B
Folge k
Spalte C
Zeitfolge t
Spalte D
Signal
Spalte E
Differenzengleichung
Zeile 500
Zeile 511
Zeile 522

Differenzengleichung n​ach dem Rückwärts-Differenzenquotient m​it Anfangswert für 3 Wertefolgen:

Beispiel Differenzialgleichung (Funktionsgleichung) der Integration 1. O.: kann mit einem Anfangswert starten, wenn für die anderen Folgen gegeben ist.
Spalte A
-
Spalte B
Folge k
Spalte C
Zeitfolge t
Spalte D
Signal
Spalte E
Differenzengleichung
Zeile 500
Zeile 511
Zeile 522
Numerische Lösung einer DGL 1. O. nach 2 Verfahren.

Beispiel e​iner Differenzengleichung n​ach dem Vorwärts- u​nd Rückwärts-Differenzenquotienten o​hne Eingangserregung:

Beispiel Differenzialgleichung: Eingangssignal: .[10]
Die zugehörigen Differenzengleichungen können mit einem Anfangswert starten.
Differenzengleichung nach dem Vorwärts-Diff.: . .
Differenzengleichung nach dem Rückwärts-Diff.: überführt in . .

Tabelle für d​as Beispiel Rückwärts-Differenzenquotient:

Spalte A
-
Spalte B
Folge k
Spalte C
Zeitfolge t
Spalte D
Differenzengleichung
Zeile 500
Zeile 511
Zeile 522

Numerische Berechnung dynamischer Systeme mit Differenzialgleichungen zweiter und höherer Ordnung

Folgende Verfahren z​ur Lösung v​on dynamischen Systemen m​it konjugiert komplexen Polen s​ind bekannt:

  • Lösung einer DGL 2. O. mit einem Modellregelkreis
  • Lösung einer DGL höherer Ordnung mit Differenzenquotienten
  • Lösung einer DGL höherer Ordnung mit Zustandsvariablen

Lösung einer DGL 2. O. mit einem Modellregelkreis

Ein I-Glied und ein PT1-Glied werden zu einem Modellregelkreis geschaltet. Damit entsteht ein Schwingungsglied (), welches durch eine lineare DGL 2. O. mit konstanten Koeffizienten und einer Eingangserregung (Störfunktion) beschrieben wird:

Die Differenzengleichungen d​es I-Gliedes u​nd des PT1-Gliedes erhalten d​ie Koeffizienten a​us den Zahlenwerten d​er vorgegebenen DGL 2. O. d​urch Faktorenvergleich.

Berechnet werden d​ie drei Differenzengleichungen d​es I-Gliedes, d​es PT1-Gliedes u​nd die Schließbedingung (Regelabweichung) d​es Modellregelkreises mit:

Diese Methode i​st sehr einfach u​nd genau hinsichtlich minimaler Anzahl d​er Folgeglieder. Sie bezieht a​ber nur a​uf die Lösung v​on DGL 2. O. u​nd wird deshalb n​icht weiter behandelt.

Lösung einer DGL höherer Ordnung mit Differenzenquotienten

Die Umwandlung einer Differenzialgleichung in eine Differenzengleichung erfordert für jede Ableitung einen entsprechenden Differenzenquotienten, die in vielen Publikationen definiert sind. Das nachfolgend dargestellte Berechnungsbeispiel eines -Gliedes 2. O. zeigt einen beträchtlichen algebraischen Aufwand.

Vorwärts-Differenzenquotient 2. Ordnung:

Rückwärts-Differenzenquotient 2. Ordnung:

Nach erfolgtem Einsetzen der Differenzenquotienten (hier Rückwärts-Differenzenquotient) anstelle der Differenzialquotienten der Differenzialgleichung eines dynamischen Systems 1. und 2. Ordnung lässt sich die so geschaffene Differenzengleichung lösen. Weil des Differenzenquotienten 2. Ordnung für und gesetzt wird, sind die Werte für und und damit kann für alle Folgen berechnet werden.

Sprungantwort eines PT2-Schwingungsgliedes. Δt = 0,01 s.
Gegeben: Übertragungsfunktion im s-Bereich:
Sprungfunktion:

Gesucht: Differenzengleichung 2. Ordnung z​ur numerischen Bestimmung d​es System-Zeitverhaltens.

Zugehörige Differentialgleichung n​ach dem Differentiationssatz d​er Laplace-Transformation:

Die Differenzenquotienten werden in die nachfolgende Differenzengleichung eingesetzt:
Gewählt: Rückwärts-Differenzenquotienten anstelle der Differenzialquotienten und .

Die Brüche werden in einzelne additive Terme aufgelöst, um freistellen zu können, Hilfsgröße eingeführt:

Berechnungsbeispiel für einige Werte der Ausgangsfolge mit Sprung :

Tabellarische Berechnung
Folge
k
Δt = h
[s]
Term 1
Term 2Term 3Term 4y(k)
Σ Terme
y(t)
Analytisch
000,00160,0000-0,00000,00000,00160,0000
10,010,00160,0032-0,00000,00000,00490,0008
20,020,00160,0096-0,00160,00010,00970,0033
30,030,00160,0190-0,00480,00020,01600,0074
780,780,00162,9139-1,45860,02431,48671,5192
Der Maximalwert der 1. Amplitude der Sprungantwort des Schwingungsgliedes erfolgt bei k = 78 und t = 0,78 [s] mit y(t) = 1,5192.

Lösung einer DGL höherer Ordnung mit Zustandsvariablen nach der Zustandsraumdarstellung

Ein Zustandsraummodell d​er Zustandsraumdarstellung symbolisiert d​ie überführte Differenzialgleichung n-ter Ordnung i​n n-gekoppelte Zustands-Differenzialgleichungen erster Ordnung. Die Zustandsvariablen beschreiben physikalisch d​en Energiegehalt d​er in e​inem dynamischen System enthaltenen Speicherelemente.

Mit Hilfe d​es Signalflussplanes d​er Zustandsraumdarstellung#Regelungsnormalform lassen s​ich lineare gewöhnliche Differenzialgleichungen dynamischer Systeme höherer Ordnung einfach lösen. Dabei w​ird die gegebene DGL höherer Ordnung i​n verkoppelte DGL 1. Ordnung überführt. Die Differenzengleichung d​er Zustandsvariablen bestimmen d​ie Lösung d​er DGL höherer Ordnung.

Die numerische Berechnung bezieht s​ich dabei a​uf den Signalflussplan d​er Regelungsnormalform d​es Zustandsraumes. Die systembeschreibende Differenzialgleichung w​ird in expliziter Darstellung (geordnet n​ach der höchsten Ableitung y(t)) i​n ein Signalflussdiagramm gebracht, w​obei die Anzahl d​er Ableitungen v​on y(t) d​ie Anzahl d​er Integratoren bestimmen.[11]

Die Regelungsnormalform ähnelt signaltechnisch d​er elektrischen Schaltung e​ines Analogrechners z​ur Lösung e​iner Differenzialgleichung, f​alls keine differentiellen Anteile d​es Übertragungssystems vorliegen. Sind Anfangswerte gegeben, werden d​ie Integratoren direkt a​uf die Anfangswerte gesetzt, d. h. d​ie tabellarisch geordneten Folgeglieder d​er numerischen Berechnung d​er Integratoren starten m​it den Anfangswerten.

Dieser Signalflussplan d​er Regelungsnormalform lässt s​ich numerisch leicht berechnen. Für j​ede Ableitung d​er Differenzialgleichung m​uss numerisch e​ine Differenzengleichung d​er Integration (I-Glied) m​it den zugehörigen Koeffizienten berechnet werden. Anfangswerte können s​ehr einfach berücksichtigt werden.

Laut Signalflussplan der Regelungsnormalform kann man die Darstellung einer Differenzialgleichung 2. Ordnung als einen zweischleifigen Kreis betrachten. Die Lösung der Differenzialgleichung entspricht für der Zustandsvariablen .

Laut Wirkungskreis d​es Signalflussplans werden d​rei numerisch lösbare Gleichungen benötigt:

1) Zustandsrückführung , 2) Integration von , 3) Integration von .

Da d​iese Gleichungen voneinander abhängig sind, können s​ie nicht z​um gleichen Folgezeitpunkt berechnet werden. Zur Vermeidung v​on Zirkelbezug-Fehlermeldungen dürfen d​ie beiden Differenzengleichungen d​er Integration n​icht nur m​it dem Verfahren d​es Rückwärts-Differenzenquotienten berechnet werden. Werden b​eide Integratoren m​it dem Verfahren d​es Vorwärts-Differenzenquotienten berechnet, ergeben s​ich größere Abweichungen z​ur analytischen Funktion.

Bei zusammenhängenden Systemen bzw. Differenzengleichungen entspricht jede Ausgangsgröße einer Eingangsgröße der nachfolgenden Differenzengleichung.

Gegenüber d​em Verfahren m​it Differenzenquotienten 2. Ordnung i​st das Verfahren n​ach der Regelungsnormalform d​urch geringere Anzahl d​er Folgeglieder b​ei gleicher Genauigkeit s​ehr überlegen.

Signalflussplan der Regelungsnormalform für ein PT2-Schwingungsglied
Sprungantwort eines PT2-Schwingungsgliedes nach der Regelungsnormalform

Berechnungsbeispiel e​iner DGL 2. O. m​it Zustandsvariablen:

Gegeben: Übertragungsfunktion im s-Bereich:
Zugehörige Differenzialgleichung nach dem Differentiationssatz der Laplace-Transformation:

Gesucht: Explizite Form der Differenzialgleichung 2. O. und Bestimmung des System-Zeitverhaltens .

  • Zustandsrückführung als Gleichung der numerischen Lösung laut Signalflussplan:
  • Zustandsvariablen der Zustandsrückführung mit den Integratoren als Differenzengleichung:
Variable nach dem Vorwärts-Differenzenquotienten:
Variable nach dem Rückwärts-Differenzenquotienten:

Tabellarische Berechnung für einige Werte der Ausgangsfolge mit ; Sprung :

Spalte A
-
-
Spalte B
Zeitfolge t
-
Spalte C
Eingangs-
signal
Spalte D
Zustands-
rückführung
Spalte E
Integration Vow.-Diff.
Variable x2
Spalte F
Integration Rückw.-Diff.
Variable x1 =
Spalte D
Analytisch
Zeile 49000000
Zeile 5001,016,666E50=E49+D49*h = 0F50=F49+E50*h = 00,0
Zeile 510,051,014,583E51=E50+D50*h = 0,833F51=F50+E51*h = 0,0420,020
Zeile 520,101,012,066E52=E51+D51*h = 1,562F52=F51+E52*h = 0,1200,078
Zeile 530,151,09,256E53=E52+D52*h = 2,166F53=F52+E53*h = 0,2280,168
Zeile 650,751,0-8,865E65=E64+D64*h = 0,169F65=F64+E65*h = 1,5151,519
Der Maximalwert der 1. Amplitude der Sprungantwort des Schwingungsgliedes erfolgt bei Zeile F65, k = 15 und t = 0,75 [s] mit = 1,515.

Anmerkung:

Laut Fachliteratur Ist e​s üblich, d​ie Differenzengleichungen d​er Integration z. B. d​es gegebenen Beispiels d​er Differenzialgleichung 2. O. i​n zwei Zustandsgleichungen zusammenzufassen.

und .

Ausgehend v​on einer DGL höherer Ordnung erzeugt m​an über Zustandsgrößen e​in äquivalentes Differenzialgleichungssystem.[12]

Die i​m Beispiel angegebene Gleichung d​er Zustandsrückführung w​ird in d​ie Zustandsgleichung d​er Integration x2 eingebracht. Die numerischen Gleichungen dafür lauten:

Anfangswert
Anfangswert

Differenzengleichungssysteme

In d​er Technik kommen dynamische Systeme selten a​ls einzelne Systeme vor, sondern e​s liegen verschiedenartige Systeme m​it linearem, nichtlinearem o​der unstetigem Systemverhalten vor, d​ie in Reihe o​der parallel o​der mit Rückführungen zusammen wirken. Auf konventionellem Wege lassen s​ich solche Gesamtsysteme n​icht mehr berechnen. Mittels Differenzengleichungen u​nd logischen z. B. IF-THEN-ELSE-Anweisungen o​der Tabellen, d​ie die statische Nichtlinearität beschreiben, lassen s​ich solche Gesamtsysteme simulieren.

Kompensation von linearen dynamischen Systemen 1. Ordnung mit verzögerndem Verhalten

In der Praxis können mehrere hintereinander liegende dynamische Systeme als Verzögerungsglieder auftreten, die zu einer höheren Systemordnung führen und evtl. die Berechnung bzw. die Simulation erschweren. Mit Übertragungsfunktionen kann man mathematisch nachweisen, dass z. B. hintereinander wirkende PT1-Glieder durch (ideale) PD1-Glieder und I-Glieder durch (ideale) D-Glieder bei gleichen Faktoren und Zeitkonstanten sich vollständig zum Faktor 1 kompensieren. Das gleiche Verhalten erreicht man auch in der numerischen Berechnung dynamischer Systeme, wobei die Folgeglieder der verschiedenen Systeme sich vollständig kompensieren. Die Ausgangsfolgen eines dynamischen Systems werden zu Eingangsfolgen des nachfolgenden Systems.

Tabelle zur Darstellung numerischer Eingangs-/Ausgangsfolgen von hintereinander wirkenden zwei PT1-Gliedern und einem PD1-Glied zur Kompensation.
Gewähltes Verfahren: Austausch Differenzialquotient der Differenzialgleichung durch Rückwärts-Differenzenquotient.
Mit den gemeinsamen Daten: wird:
-Glied:
-Glied:
Sprungantworten von drei hintereinander liegenden PT1-, PT1-, PD1-Gliedern
Folge kZeit-
schritt
Eingangs-
folge
-Glied
Folge
-Glied
Folge
PD1-Glied
Folge
PT1-Glied
analytisch
0010,16670,02780,16670,0
10,210,30560,07410,30560,1813
20,410,42130,13190,42130,3297
30,610,51770,19620,51770,4512
40,810,59810,26320,59810,5507
51,010,66510,33020,66510,6321
204,010,97830,90220,97830,9817
Ergebnis: Das -Glied wurde vollständig durch das ideale PD1-Glied kompensiert.

Liegen mehrere Verzögerungssysteme oder integrierende Systeme hintereinander, dann eignen sich die Differenzengleichungen nach dem Berechnungsverfahren mit dem Rückwärts-Differenzenquotienten vorteilhafter, weil für und das zugehörige Folgeglied immer ist.

Bei der Berechnung von z. B. 3 hintereinander liegenden Verzögerungsgliedern nach dem Berechnungsverfahren mit dem Vorwärts-Differenzenquotienten startet erst das 3. Verzögerungsglied bei , weil .

Simulationsmodell eines dynamischen Übertragungssystems

Mit d​er Simulation e​ines mathematischen Modells e​ines Übertragungssystems bzw. e​ines Regelkreises ergibt s​ich die Möglichkeit, m​it geeigneten Testsignalen e​ine Systemanalyse o​der eine Systemoptimierung durchzuführen.

Blockschaltbild eines Regelkreises durch Beschreibung mit Übertragungsfunktionen und Differenzengleichungen.

Der Vorteil d​er Simulation a​n einem Modell l​iegt auf d​er Hand. Es werden k​eine technischen Anlagen gefährdet, bzw. benötigt, d​er Zeitfaktor spielt k​eine Rolle, e​s können s​ehr schnelle o​der sehr langsame Prozesse optimiert werden. Voraussetzung i​st die mathematische Beschreibung e​ines gut angenäherten Modells d​er meist technischen Regelstrecke.

Das Modell (Modellbildung) e​ines Übertragungssystems i​st das mathematische Abbild e​iner meist technischen (evtl. physikalischen, chemischen, biologischen) Einrichtung. Es w​ird analytisch über Differenzialgleichungen gewonnen o​der experimentell d​urch Identifizierungsverfahren.

Die Modellierung e​iner bestehenden Hardware-Steuerstrecke o​der Regelstrecke i​m Zeitbereich geschieht experimentell i​n der einfachsten Form d​urch eine grafische Aufzeichnung d​er Sprungantwort m​it anschließender Analyse d​es zeitlichen Verhaltens. (Siehe Experimentelle Systemidentifikation)

Die Modellierung i​m Frequenzbereich geschieht d​urch Anregung d​es Systems d​urch eine variable Frequenz u​nd Aufzeichnung d​er Ausgangsamplitude u​nd Phase. Über d​en Frequenzgang w​ird die Übertragungsfunktion d​es Systems gebildet.

Nichtlineare Systeme können n​icht durch Übertragungsfunktionen beschrieben werden. Durch zeitdiskrete Beschreibungen i​n Form logischer Befehle (z. B. b​ei Signalbegrenzungen) o​der durch e​ine Tabelle b​ei einer nichtlinearen Kennlinie i​st das relativ einfach möglich.

Testsignale

Den nichtperiodischen (deterministischen) Testsignalen kommt in der Systemtheorie eine zentrale Bedeutung zu. Mit ihrer Hilfe ist es möglich, ein Übertragungssystem zu testen, auf Stabilität zu prüfen oder Eigenschaften zu ermitteln. Den meist normierten Testsignalen ist gemeinsam, dass sie zum Zeitpunkt beginnen und bei einen Wert aufweisen. Für die numerische Berechnung werden die Eingangsfolgen der Sprungfunktion, der Impulsfunktion oder der Anstiegsfunktion verwendet.

siehe Regelstrecke#Testsignale

Vor- und Nachteile des numerischen Differenzenverfahrens

  • Die numerische Berechnung von Differenzialgleichungen bzw. dynamischen Systemen erfordert gegenüber der konventionellen Lösung relativ geringe mathematische Kenntnisse.
  • Die Differenzengleichung kann direkt über Differenzenquotienten aus der Differenzialgleichung gebildet werden.
  • Der Approximationsfehler an eine analytische Funktion nach dem Vorwärts- oder Rückwärtsdifferenzenverfahren fällt linear mit fallender Schrittweite .
  • Erfahrungswerte für die Darstellung asymptotischer Funktionsverläufe können je nach gewünschter Genauigkeit bei 100 bis 1000 Stützstellen liegen.
  • Die numerische Berechnung schwingender Systeme mit Differenzialgleichungen 2. Ordnung erfordern eine sehr geringe Schrittweite bzw. eine hohe Anzahl von Folgegliedern zur Darstellung mehrerer Perioden. Es werden erheblich kleinere Schrittweiten benötigt, als bei der Darstellung asymptotischer Funktionen. So muss man beispielsweise für die Darstellung einer gedämpften Schwingungsfolge eine größere Anzahl von Stützstellen pro Schwingung zuordnen.
  • Mit zunehmender Verringerung der Schrittweite und mit gegebenem Eingangssignal gleichen sich die die Funktionen beider Vorwärts-Rückwärts-Differenzenverfahren an.
  • Die Berechnung von Differenzengleichungen nach Vorwärts- oder Rückwärts-Differenzenquotienten sind in Bezug auf die Genauigkeit praktisch identisch, kleine Schrittweite vorausgesetzt.
  • Der Gesamtfehler einer numerischen Berechnung besteht aus dem Numerik-Verfahren und dem Rundungsfehler.
Der Rundungsfehler muss berücksichtigt werden, wenn die Folgeglieder nicht mit ausreichender Stellengenauigkeit berechnet werden. Anderenfalls addieren sich die Rundungsfehler mit jedem Folgeglied.
  • Laut einer Veröffentlichung (Thomas Westermann) wird in einem Vergleich mit dem Euler-Vorwärts-Verfahren (= Vorwärts-Differenzenquotient-Verfahren), dem Prädiktor-Korrektor-Verfahren und dem Runge-Kutta-Verfahren eine sinusförmige Spannung an einem Kondensator eines mit 220 V AC eingespeisten RC-Gliedes betrachtet. Eine durchgeführte Fehleranalyse ergab für eine Schrittweite von [s] gegenüber der Referenz für Euler-Vorwärts gegen Runge-Kutta einen etwa 12-fachen Wert des absoluten Fehlers.[13]
  • Nachteilig bei dem numerischen Einschrittverfahren ist die große Zahl der Folgeelemente für die Berechnung mit hoher Genauigkeit.

Nichtlineare Übertragungssysteme

Lineare u​nd nichtlineare DGL m​it konstanten Koeffizienten s​ind mit Hilfe v​on Differenzengleichungen annäherungsweise (Approximation) leicht lösbar.

Im Gegensatz d​azu sind relativ einfache Übertragungssystem-Strukturen m​it nichtlinearen statischen Elementen d​urch konventionelle Rechenmethoden i​m kontinuierlichen Zeitbereich n​icht mehr geschlossen lösbar.

Allgemeine Darstellung eines nichtlinearen Übertragungsgliedes nach dem Hammerstein-Modell

Nach d​em Hammersteinmodell w​ird das nichtlineare Systemverhalten i​n ein statisches nichtlineares Modell i​n Verbindung a​ls Reihenschaltung m​it einem linearen dynamischen System betrachtet.

Maßnahmen z​ur Linearisierung nichtlinearer Übertragungssysteme:

  • Begrenzungseffekte: Nachbildung der Begrenzung mit logischen Anweisungen,
  • Nichtlineare Kennlinie: Anwendung eines Modellregelkreises zwingt zur Linearität,
  • Nichtlinearität: durch logische Befehle wie logische Anweisungen z. B. IF-THEN-ELSE-Anweisungen oder Tabellen, die die statische Nichtlinearität beschreiben.
  • Hysterese: Die nichtlineare Funktion wird in Tabellen gespeichert.

siehe auch Bild Regelungstechnik#Nichtlineares Übertragungssystem

Behandlung der Systemtotzeit (lineares System)

  • Berechnung eines Annäherungsmodells mit Verzögerungen höherer Ordnung oder Allpassglieder,
  • Speicherung von Folgegliedern mit Zugriff auf zeitlich mit zurückliegende Folgeglieder.
  • Bei Anwendung der Tabellenkalkulation: INDEX-Funktion

siehe auch Totzeit (Regelungstechnik)#Annäherung an das Verhalten eines Totzeitgliedes durch PTn-Glieder als Ersatztotzeit

Einzelnachweise

  1. Fachbuch: Jürgen Koch / Martin Stämpfle: „Mathematik für das Ingenieurstudium“, Kapitel „Gewöhnliche Differenzialgleichungen“, "Anfangswertproblem".
  2. Fachbuch:Thomas Westermann: Mathematik für Ingenieure, Ein anwendungsorientiertes Lehrbuch, Kapitel „Gewöhnliche Differenzialgleichungen“, "Anfangswertproblem".
  3. Prof. Dr. Bastian von Harrach, Goethe-Universität Frankfurt a. M., Skript „Numerik von Differenzialgleichungen“: Anfangswertproblem, Richtungsfeld, Euler-Verfahren (Kapitl 1.2.3, Seite 22), Runge-Kutta-Verfahren, Mehrschritt-Verfahren.
  4. Prof. Dr. Wandinger: Anfangswertprobleme 1. Ordnung. (PDF) S. 7.1-9, abgerufen am 7. September 2021..
  5. Die Darstellung des im Artikel benutzten Beispiels der Differenzialgleichung und der Gleichung der analytischen Funktion für stammt aus dem Skript und dem gleichnamigen Fachbuch von Prof. Dr. Thomas Westermann, Uni Karlsruhe, „Mathematik für Ingenieure, Anwendungsorientiertes Lehrbuch“, Kapitel „Numerisches Lösen“, 8. Auflage 2020.
  6. H. Biner, H.P. Dreyer, W. Hartmann, A. Moretti: Der Fallschirmspringer. Hrsg.: U. Kirchgraber. ETH Eidgenössische Technische Hochschule Zürich, 1993, S. 47 (Bericht No. 93-04 [PDF; abgerufen am 28. Dezember 2021]).
  7. Autor: Jürgen Dankert; Fachbuchreihe: Numerische Methoden der Mechanik, Einzelfachbuch: „Das Differenzenverfahren“, Springer Vieweg, Berlin, Auszug-Übersicht „Der Grundgedanke des Verfahrens besteht darin, die Differenzialquotienten in Differenzialgleichungen und Randbedingungen durch Differenzenquotienten zu ersetzen.“
  8. Prof. Dr. Christian Clemen, HS-Augsburg; Skript: Mathematik II, Kapitel: Numerische Differentiation, Numerische Integration, Numerische Lösung von gewöhnlichen Differenzialgleichungen, die Methoden von Euler, Heun und Runge-Kutta, verbesserte Euler-Verfahren.
  9. Prof. Dipl.-Ing. Manfred Ottens, FH Berlin, Skript „Grundlagen der Systemtheorie“, siehe „Kontinuierliche und zeitdiskrete Signale und Systeme“ und „Ausgangsfolge des zeitdiskreten Verzögerungsgliedes“. Vergleiche numerische Sprungantwort des PT1-Gliedes, Methode Rückwärts-Differenzenquotient, Seite 150.
  10. Grafik in Übereinstimmung mit dem Fachbuch: Bilen Emek Abali / Celal Cakiroglu: Numerische Methoden für Ingenieure, Springer Vieweg, Ausgabe 2020, Kapitel: „Verfahren zur Lösung gewöhnlicher Differentialgleichungen“.
  11. Holger Lutz, Wolfgang Wendt: Taschenbuch der Regelungstechnik mit MATLAB und Simulink. 12. Auflage. Verlag Europa-Lehrmittel, 2021, ISBN 978-3-8085-5870-6. Siehe Kapitel: "Normalformen von Übertragungssystemen"
  12. Fachbuch: Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Carl Hanser-Verlag München, Kapitel: „Euler-Verfahren für Differenzialgleichungssysteme“ und „Zustandsvariablen“.
  13. Buchauszug: Thomas Westermann: Mathematik für Ingenieure, Springerverlag, Google-Aufruf: „kap 19.pdf Mathematik für Ingenierure“. Anmerkung: Ist nicht in dem gleichnamigen Fachbuch: Thomas Westermann: Mathematik für Ingenieure, Springerverlag 8. Auflage, enthalten.

Siehe auch

Literatur

  • Andreas Meister / Thomas Sonar: Numerik „Eine lebendige und gut verständliche Einführung mit vielen Beispielen“, 1. Auflage 2018, Springer Spektrum, Springer-Verlag Deutschland, ISBN 978-3-662-58357-9.
  • Bilen Emek Abali / Celal Cakiroglu: Numerische Methoden für Ingenieure, mit Anwendungsbeispielen in Python, Springer Vieweg, Ausgabe 2020, ISBN 978-3-662-61324-5.
  • Jürgen Koch / Martin Stämpfle: Mathematik für das Ingenieurstudium 4. Auflage 2018, Carl Hanser Verlag München, ISBN 978-3-446-45166-7
  • Berg, L.: Differenzengleichungen zweiter Ordnung mit Anwendungen. Darmstadt: Steinkopff, 1980.
  • Berg, L.: Lineare Gleichungssysteme mit Bandstruktur. München, Wien: Hanser, 1986.
  • Krause, U., und Nesemann, T.: Differenzengleichungen und diskrete dynamische Systeme. Stuttgart, Leipzig: Teubner, 1999.
  • Franz Pfuff: Mathematik für Wirtschaftswissenschaftler kompakt. Vieweg+Teubner; Auflage: 1 (26. Februar 2009), ISBN 3-8348-0711-7, Kapitel 1, Abschnitt § 7 Differenzengleichungen und Finanzmathematik
  • Dürr, R., und Ziegenbalg, J.: Mathematik für Computeranwendungen. Paderborn: Schöningh, 1989.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.