Zufallsvektor

Als Zufallsvektor bezeichnet man in der Stochastik eine Funktion, die auf einem Wahrscheinlichkeitsraum definiert ist, Werte im annimmt und messbar ist. Zufallsvektoren bilden das höherdimensionale Pendant von reellwertigen Zufallsvariablen. Viele der Eigenschaften von reellwertigen Zufallsvariablen übertragen sich direkt oder nach kleinen Modifikationen auf Zufallsvektoren.

Zufallsvektoren sollten nicht mit stochastischen Vektoren, auch Wahrscheinlichkeitsvektoren genannt, verwechselt werden. Bei ihnen handelt es sich um Vektoren aus , deren Einträge positiv sind und sich zu eins aufsummieren. Zufallsvektoren hingegen sind Abbildungen.

Definition

Es bezeichne die Borelsche σ-Algebra. Sei ein Wahrscheinlichkeitsraum und eine natürliche Zahl größergleich zwei. Dann heißt eine Abbildung

für die

gilt ein -dimensionaler Zufallsvektor.

Äquivalent s​ind folgende beiden Definitionen:

  • ist eine messbare Funktion auf einem Wahrscheinlichkeitsraum nach , versehen mit der Borelschen σ-Algebra.
  • Es ist für reellwertige Zufallsvariablen auf dem Wahrscheinlichkeitsraum . Diese Definition nutzt aus, dass eine Abbildung nach genau dann messbar ist, wenn ihre Komponentenfunktionen messbar sind.

Eigenschaften

Momente

Für einen Zufallsvektor wird (bei Integrierbarkeit der Komponenten) der Erwartungswertvektor definiert als folgender Spaltenvektor

und i​st somit d​er Vektor d​er Erwartungswerte d​er Komponenten.[1]

Für die zweiten Momente wird (bei Quadratintegrierbarkeit der Komponenten) die Kovarianzmatrix des Zufallsvektors definiert als diejenige -Matrix, bei der in der -ten Zeile und der -ten Spalte die Kovarianz der Komponenten und , also

.

Unabhängigkeit

Die stochastische Unabhängigkeit von Zufallsvektoren und wird analog zur Definition für reellwertige Zufallsvariablen definiert als die stochastische Unabhängigkeit der erzeugten σ-Algebren und .[2] Hierbei bezeichnet die Initial-σ-Algebra von .

Verteilungen

Die Verteilung eines Zufallsvektors wird eine Multivariate Wahrscheinlichkeitsverteilung genannt und ist ein Wahrscheinlichkeitsmaß auf dem . Sie ist genau die gemeinsame Verteilung der Komponenten des Zufallsvektors.

Stetige und diskrete Zufallsvektoren

Analog z​u reellwertigen Zufallsvariablen n​ennt man e​inen Zufallsvektor, dessen Verteilung e​ine Wahrscheinlichkeitsdichtefunktion besitzt e​inen stetigen Zufallsvektor.[3] Ebenso w​ird ein Zufallsvektor, d​er nur abzählbar v​iele Werte annimmt e​in diskreter Zufallsvektor genannt.[4]

Verteilungsfunktion

Wie a​uch reellwertigen Zufallsvariablen lassen s​ich Zufallsvektoren Verteilungsfunktionen zuweisen. Sie werden multivariate Verteilungsfunktionen genannt.

Konvergenz

Konvergenz in Verteilung, Konvergenz in Wahrscheinlichkeit und Fast sichere Konvergenz lassen sich problemlos auf Zufallsvektoren übertragen, da sie meist zumindest für separable metrische Räume definiert werden und diese Definitionen demnach auch für den gültig sind.

Lediglich d​ie Charakterisierung d​er Verteilungskonvergenz über d​ie Verteilungsfunktion i​st nicht m​ehr möglich. Der Stetigkeitssatz v​on Lévy hingegen g​ilt aber weiterhin.

Satz von Cramér-Wold

Die folgende Aussage ermöglicht es, die Konvergenz in Verteilung in auf die Konvergenz in Verteilung in zu reduzieren. Sie wird als Satz von Cramér-Wold oder Cramér-Wold-Device (dt. Cramér-Wold-Hilfsmittel) bezeichnet.

Es bezeichnet das Standardskalarprodukt. Sei eine Folge von Zufallsvektoren in . Dann ist äquivalent:[5]

  • Die konvergieren in Verteilung gegen
  • Für jedes existiert eine reellwertige Zufallsvariable , so dass in Verteilung gegen konvergiert.

Gilt eine von beiden Aussagen (und somit beide), so besitzt für alle dieselbe Verteilung wie .

Verallgemeinerungen

Eine mögliche Verallgemeinerung e​ines Zufallsvektoren i​st eine Zufallsmatrix. Sie i​st eine matrixwertige Zufallsvariable, i​hre Verteilung w​ird eine matrixvariate Wahrscheinlichkeitsverteilung genannt.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, doi:10.1007/978-3-642-45387-8.
  • David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, doi:10.1007/b137972.

Einzelnachweise

  1. Meintrup, Schäffler: Stochastik. 2005, S. 130.
  2. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 95.
  3. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 178.
  4. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 96.
  5. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 335.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.