Magnesio-Lucchesiit

Das Mineral Magnesio-Lucchesiit ist ein sehr seltenes Ringsilikat aus der Turmalingruppe mit der idealisierten chemischen Zusammensetzung CaMg3Al6(Si6O18)(BO3)3(OH)3O.[2]

Magnesio-Lucchesiit
Allgemeines und Klassifikation
Andere Namen

Oxy-Uvit, IMA 2019-025[1]

Chemische Formel CaMg3Al6(Si6O18)(BO3)3(OH)3O[1][2]
Mineralklasse
(und ggf. Abteilung)
Silikate und Germanate
Ähnliche Minerale Dravit, Elbait, Fluor-Uvit, Uvit, Schörl
Kristallographische Daten
Kristallsystem trigonal[1][2]
Kristallklasse; Symbol 3/mVorlage:Kristallklasse/Unbekannte Kristallklasse[1][2]
Raumgruppe R3m (Nr. 160)Vorlage:Raumgruppe/160[1][2]
Gitterparameter a = synthetisch: 15,927(3)[3],
natürlich: 15,9910(3) Å; c = synthetisch: 7,184(3)[3],
natürlich: 7,2224(2) Å[1][2]
Formeleinheiten Z = 3[1][2]
Physikalische Eigenschaften
Mohshärte 7–8[2]
Dichte (g/cm3) berechnet: 3,168–3,175[2]
Spaltbarkeit -
Bruch; Tenazität muschelig[2]
Farbe natürlich: schwarz[2], synthetisch: farblos
Strichfarbe Bitte ergänzen!
Transparenz Bitte ergänzen!
Glanz Glasglanz[2]
Radioaktivität -
Magnetismus -
Kristalloptik
Brechungsindizes nω = 1,668(3) – 1,665(5)[2]
nε = 1,644(3) – 1,645(5)[2]
Doppelbrechung δ = 0,024–0,020
Optischer Charakter einachsig negativ[2]

Magnesio-Lucchesiit kristallisiert mit trigonaler Symmetrie und bildet schwarze, unregelmäßige Körner oder prismatische Kristalle von wenigen Millimetern Größe. Anhand äußerer Kennzeichen ist Magnesio-Lucchesiit nicht von anderen schwarzen Turmalinen zu unterscheiden. Im Dünnschliff zeigt dieser Turmalin einen starken Pleochroismus von grünlich-blau oder dunkelbraun nach gelblich-braun bis farblos.[2] Wie alle Minerale der Turmalingruppe ist Magnesio-Lucchesiit pyroelektrisch und piezoelektrisch.

Gebildet wird Magnesio-Lucchesiit meist bei der Kontaktmetamorphose basischer bis ultrabasischer, calcium- und magnesiumreicher Gesteine, z. B. durch die Reaktion von Aktinolith, Magnesio-Hornblende oder Mineralen der Serpentingruppe mit borreichen Lösungen. Typlokalität ist der Randbereich eines Lamprophyr-Gangs in der Nähe des O’Grady Batholith in den Nordwest-Territorien, Kanada.

Etymologie und Geschichte

Die erste vollständige Charakterisierung eines natürlichen Oxy-Uvit-Oxy-Dravit-Mischkristalls aus Ostafrika publizierte eine Arbeitsgruppe um Frank C. Hawthorne von der University of Manitoba 1995.[4] In der 1999 zusammen mit Darrell James Henry vorgestellten Klassifikation der Minerale der Turmalingruppe führt Hawthorne den Oxy-Dravit und den Oxy-Uvit als hypothetische Endglieder auf.[5] Als solche werden sie auch in der 2009 veröffentlichten IMA-Klassifikation nach Strunz geführt.[6]

Die ersten Synthesen von Oxy-Uvit gelangen Gabriela von Görne im Jahr 2000 an der Technischen Universität Berlin.[3] 16 Jahre später publizierten E. J. Berrymann und Mitarbeiter vom GeoForschungsZentrum in Potsdam Kristallstrukturuntersuchungen synthetischer Turmaline mit unterschiedlichen Kationen auf der X-Position.[7]

Ferdinando Bosi beschrieb 2017 mit Mitarbeitern aus Schweden, Italien und Tschechien einen Oxy-Feruvit aus Indien und benannte das neue Mineral der Turmalingruppe Lucchesiit nach seinem im Jahr 2010 verstorbenen Kollegen Sergio Lucchesi.[8] Zwei Jahre später beschrieb Emily D. Scribner von der Clemson University in South Carolina mit Mitarbeitern aus Kanada, Italien, Tschechien und Schweden das Magnesium-Analog von Lucchesiit. Sie benannten diesen neuen Turmalin nach seiner Zusammensetzung Magnesio-Lucchesiit.[1][2]

Klassifikation

In der strukturellen Klassifikation der International Mineralogical Association (IMA) gehört Magnesio-Lucchesiit zusammen mit Lucchesiit zur Untergruppe 3 der Calciumgruppe in der Turmalinobergruppe.[9][10]

Die seit 2001 gültige und bislang von der IMA verwendete 9. Auflage der Strunz’schen Mineralsystematik führt den Magnesio-Lucchesiit noch als das hypothetische Endglied Oxy-Uvit in der Klasse 9 der „Silikate und Germanate“ und dort in der Abteilung C der „Ringsilikate“ auf. Diese Abteilung ist weiter unterteilt nach der Größe, Verknüpfung und Verzweigung der Silikatringe, so dass das Mineral entsprechend seinem Aufbau in der Unterabteilung „K. [Si6O18]12−-Sechser-Einfachringe mit inselartigen, komplexen Anionen“ zu finden ist, wo es zusammen mit Ferri-Feruvit, Ferri-Uvit, Fluor-Chromdravit, Fluor-Dravit, Fluor-Schörl, Fluor-Elbait, Fluor-Foitit, Fluor-Mg-Foitit, Fluor-Olenit, Fluor-Rossmanit, Hydroxy-Buergerit, Hydroxy-Feruvit, Hydroxy-Liddicoatit, Hydroxy-Uvit, Oxy-Chromdravit, Oxy-Dravit, Oxy-Elbait, Oxy-Ferri-Foitit, Oxy-Feruvit, Oxy-Foitit, Oxy-Liddicoatit, Oxy-Mg-Ferri-Foitit, Oxy-Mg-Foitit, Oxy-Rossmanit, Oxy-Schörl zu den hypothetischen Endgliedern der „Turmalingruppe“ mit der System-Nr. 9.CK.05 gezählt wird.

Die 8. Auflage der Mineralsystematik nach Strunz kennt den Magnesio-Lucchesiit noch nicht.

Auch im Lapis-Mineralienverzeichnis nach Stefan Weiß, das sich aus Rücksicht auf private Sammler und institutionelle Sammlungen noch nach dieser alten Form der Systematik von Karl Hugo Strunz richtet, wird der Magnesio-Lucchesiit noch nicht aufgeführt. Er würde hier zusammen mit Adachiit, Bosiit, Chrom-Dravit, Chromo-Aluminopovondrait, Darrellhenryit, Dravit, Elbait, Feruvit, Fluor-Buergerit (ehemals Buergerit), Fluor-Dravit, Fluor-Elbait, Fluor-Liddicoatit (ehemals Liddicoatit), Fluor-Schörl, Fluor-Tsilaisit, Fluor-Uvit, Foitit, Lucchesiit, Luinait-(OH), Magnesio-Foitit, Maruyamait, Olenit, Oxy-Chromdravit, Oxy-Dravit, Oxy-Foitit, Oxy-Schörl, Oxy-Vanadiumdravit, Povondrait, Rossmanit, Schörl, Tsilaisit, Uvit, Vanadio-Oxy-Chromdravit und Vanadio-Oxy-Dravit in die „Turmalin-Gruppe“ der Ringsilikate eingeordnet werden. (Stand 2018).[11]

Die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana kennt den Magnesio-Lucchesiit ebenfalls nicht.

Chemismus

Magnesio-Lucchesiit ist das Mg2+-Analog von Lucchesiit bzw. das Oxy-Analog von Uvit und Fluor-Uvit und hat die idealisierte Zusammensetzung [X]Ca[Y]Mg2+3[Z]Al6([T]Si6O18)(BO3)3[V](OH)3[W]O, wobei [X], [Y], [Z], [T], [V] und [W] die Positionen in der Turmalinstruktur sind.[2]

Für die Kristalle aus der Typlokalität und von der Insel Elba wurden folgende empirischen Zusammensetzungen bestimmt: [2]

  • O’Grady Batholith: [X](Ca0,6Na0,39K0,01)[Y](Mg2+2,02Fe2+0,62Fe3+0,09Ti4+0,25V3+0,01Cr3+0,01)[Z](Al5,31Fe3+0,69)[[T](Si5,98Al0,02)6O18](BO3)3[V][(OH)2,59O0,41][W](O0,78F0,22)
  • San Piero in Campo: [X](Ca0,88Na0,12)[Y](Mg2+1,45Fe2+0,40Fe3+0,36Al0,79)[Z]Al6[[T](Si5,05Al0,95)O18](BO3)3[V][(OH)2,90O0,10][W](O0,98F0,02)

Angegeben ist jeweils die geordnete Verteilung von Kationen und Anionen, wie sie für eine Klassifikation benötigt wird. Magnesio-Lucchesiit bildet Mischungsreihen mit einem hypothetischen Magnesio-Adachiit, Uvit, Fluor-Uvit, Lucchesiit und dem hypothetischen Oxy-Magnesio-Foitit entsprechend der Austauschreaktionen:

  • [Y]Mg2+ = [Y]Fe2+ (Lucchesiit)[2]
  • [Z]Al3+ + [W]O2- = [Z]Mg2+ + [W]F- (Fluor-Uvit)[2]
  • [Z]Al3+ + [W]O2- = [Z]Mg2+ + [W](OH)- (Uvit)[4]
  • [T]Si4+ + [W]O2- = [T]Al3+ + [W](OH)- (Magnesio-Adachiit)[2]
  • [X]Ca2+ + 2[Y]Mg2+ = [X]□ + 2[Y]Al3+ (Oxy-Magnesio-Foitit)[3]

Kristallstruktur

Magnesio-Lucchesiit kristallisiert mit trigonaler Symmetrie in der Raumgruppe R3m (Raumgruppen-Nr. 160)Vorlage:Raumgruppe/160 mit 3 Formeleinheiten pro Elementarzelle. Die Gitterparameter des Magnesio-Lucchesiit aus der Typlokalität sind a = 15,9910(3) Å, c = 7,2224(2) Å.[2]

Die Struktur ist die von Turmalin. Calcium (Ca2+) wird auf der von 9 Sauerstoffen umgebenen [X]-Position eingebaut und Silicium (Si4+) besetzt die tetraedrisch von 4 Sauerstoffionen umgebene T-Position. Magnesium (Mg2+) und Aluminium (Al3+) verteilen sich relativ gleichmäßig auf die oktaedrisch koordinierten [Y]- und [Z]-Positionen. Die Anionenposition [V] ist mit (OH)-Gruppen belegt, die [W]-Position enthält O2-.[2]

Bildung und Fundorte

Gebildet wird Magnesio-Lucchesiit bei der hydrothermalen Überprägung von magnesiumreichen Gesteinen durch borreiche Lösungen. Bislang (2021) sind zwei verschiedene Typen des Auftretens beschrieben worden.[2][12]

Kontaktmetamorphe Metabasite

Hier bildet sich Magnesio-Lucchesiit bei der Reaktion von magnesiumreichen Silikaten mit borreichen Lösungen. In der Typlokalität, dem Randbereich eines Lamprophyr-Gangs in der Nähe des O’Grady Batholith in den Nordwest-Territorien, Kanada, tritt Magnesio-Lucchesiit in schmalen Zonen am Rand von größeren Turmalinkristallen auf. Begleitminerale sind hier die Minerale des Lamprophyrs Aktinolith und Magnesio-Hornblende, bei deren Abbau er sich gebildet hat, Plagioklas, Kalifeldspat, Quarz, Titanit, Diopsid, Apatit, Allanit-(Ce) und Zirkon sowie sekundärer Klinochlor. Neben dem seltenen Magnesio-Lucchesiit enthalten die Turmalinaggregate noch Dravit, Uvit, Fluor-Uvit und Feruvit.[2]

Im zweiten Vorkommen unmittelbar südlich von San Piero in Campo auf der Insel Elba in Italien tritt Magnesio-Lucchesiit in feinen hydrothermalen Gängen und Rissen im Meta-Serpentinit der Kontaktaureole der Monte Capanne Monzonitintrusion auf. Begleitminerale sind hier neben anderen calciumreichen Turmalinen (Uvit) Chlorit, Hellglimmer, Titanit und teilweise oxidierter Pyrit.[2]

Calcit-Dolomit-Marmore

In den Marmoren bei Černá in Südböhmen, Tschechien, tritt Magnesio-Lucchesiit zusammen mit Dravit, Fluor-Uvit, Calcit, Dolomit, Kalifeldspat, Plagioklas, Epidot und Apatit auf. Er bildete sich bei der Regionalmetamorphose von Kalksilikatgesteinen mit evapositischen Anteilen.[13][2]

  • Magnesio-lucchesiite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 9. April 2021 (englisch).

Einzelnachweise

  1. E.D. Scribner, J. Cempírek, L. A. Groat, R. J. Evans: Magnesio-lucchesiite, IMA 2019-025. CNMNC Newsletter No. 50. In: Mineralogical Magazine. Band 83, 2019, doi:10.1180/mgm.2019.46 (englisch).
  2. Emily D. Scribner, Jan Cempírek, Lee A. Groat, R. James Evans, Cristian Biagioni, Ferdinando Bosi, Andrea Dini, Ulf Hålenius, Paolo Orlandi, Marco Pasero: Magnesio-Lucchesiite, CaMg3Al6(Si6O18)(BO3)3(OH)3O, A New Species Of The Tourmaline Supergroup. In: American Mineralogist. in press (englisch, minsocam.org [PDF; 1,2 MB; abgerufen am 4. September 2021]).
  3. G. von Goerne, G. Franz: Synthesis of Ca-tourmaline in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. In: Mineralogy and Petrology. Band 69, 2000, S. 161–182 (englisch).
  4. Matthew C. Taylor, Mark A. Cooper, Fannk C. Hawthorne: Local Charge-compensation in Hydroxyl-deficient Uvite. In: The Canadian Mineralogiste. Band 33, 2016, S. 1215–1221 (englisch, rruff.info [PDF; 595 kB; abgerufen am 4. September 2021]).
  5. Frank C. Hawthorne, Darrell J. Henry: Classification of the minerals of the tourmaline group. In: European Journal of Mineralogy. Band 11, 1999, S. 201–215 (englisch, researchgate.net [PDF; abgerufen am 12. Oktober 2020]).
  6. Ernest H. Nickel, Monte C. Nichols: IMA/CNMNC List of Minerals 2009. Hrsg.: IMA/CNMNC. Januar 2009 (englisch, cnmnc.main.jp [PDF; 1,9 MB; abgerufen am 10. März 2021]).
  7. E. J. Berryman, B. Wunder, A. Ertl, M. Koch‑Müller, D. Rhede, K. Scheidl, G. Giester, W. Heinrich: Influence of the X‑site composition on tourmaline’s crystal structure: investigation of synthetic K‑dravite, dravite, oxy‑uvite, and magnesio‑foitite using SREF and Raman spectroscopy. In: Physics and Chemistry of Minerals. Band 43, 2016, S. 83–102 (englisch, academia.edu [PDF; 2,3 MB; abgerufen am 4. September 2021]).
  8. Ferdinando Bosi, Henrik Skogby, Marco E. Ciriotti, Petr Gadas, Milan Novák, Jan Cempírek, Dalibor Všianský, Jan Filip: Lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. In: Mineralogical Magazine. Band 81(1), 2017, S. 1–14 (englisch, researchgate.net [PDF; 242 kB; abgerufen am 28. September 2021]).
  9. Darrell J. Henry, Milan Novák, Frank C. Hawthorne, Andreas Ertl, Barbara L. Dutrow, Pavel Uher, Federico Pezzotta: Nomenclature of the tourmaline-supergroup minerals. In: The American Mineralogist. Band 96, 2011, S. 895–913 (englisch, rruff.info [PDF; 617 kB; abgerufen am 13. Dezember 2020]).
  10. Darrell J. Henry, Barbara L. Dutrow: Tourmaline studies through time: contributions to scientific advancements. In: Journal of Geosciences. Band 63, 2018, S. 77–98 (englisch, jgeosci.org [PDF; 2,2 MB; abgerufen am 12. August 2020]).
  11. Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. Stand 03/2018. 7., vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2018, ISBN 978-3-921656-83-9.
  12. Fundortliste für Magnesio-Lucchesiit beim Mineralienatlas (deutsch) und bei Mindat (englisch), abgerufen am 4. September 2021.
  13. Lukáš Krmíček, Milan Novák, Robert B. Trumbull, Jan Cempírek, Stanislav Houzar: Boron isotopic variations in tourmaline from metacarbonates and associated calc-silicate rocks from the Bohemian Massif: Constraints on boron recycling in the Variscan orogen. In: Geoscience Frontiers. Band 12(1), 2021, S. 219230, doi:10.1016/j.gsf.2020.03.009 (englisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.