Lithiumamid

Lithiumamid ist eine chemische Verbindung des Lithiums aus der Gruppe der Amide.

Kristallstruktur
_ Li+ 0 _ N3− 0 _ H+
Kristallsystem

tetragonal

Raumgruppe

I4 (Nr. 82)Vorlage:Raumgruppe/82

Gitterparameter

a = 504,309 pm
c = 1022,62 pm[1]

Allgemeines
Name Lithiumamid
Verhältnisformel LiNH2
Kurzbeschreibung

farb- und geruchloser Feststoff[2]

Externe Identifikatoren/Datenbanken
CAS-Nummer 7782-89-0
EG-Nummer 231-968-4
ECHA-InfoCard 100.029.062
PubChem 24532
Wikidata Q2565173
Eigenschaften
Molare Masse 22,96 g·mol−1
Aggregatzustand

fest

Dichte

1,178 g·cm−3 (20 °C)[2]

Schmelzpunkt

373 °C[2]

Siedepunkt

430 °C[2]

Löslichkeit
  • Zersetzung in Wasser[2]
  • unlöslich in Ethanol und Benzol[3]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]

Gefahr

H- und P-Sätze H: 261314
EUH: 014
P: 280301+330+331305+351+338309+310402+404 [2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Gewinnung und Darstellung

Lithiumamid wird industriell durch Erhitzen von Lithium oder Lithiumhydrid in einem Strom von Ammoniak hergestellt. Außerdem bildet es sich langsam, wenn Lithium in flüssigem Ammoniak gelöst wird.[4] Wie auch bei anderen Alkali- und Erdalkaliamiden wird diese Reaktion durch die Anwesenheit von Eisen(II)-chlorid erheblich beschleunigt.[5]

Eigenschaften

Lithiumamid ist ein farb- und geruchloser Feststoff, der sich in Wasser zersetzt.[2]

Die Verbindung ist allgemein sehr hydrolyseempfindlich, kristallisiert tetragonal mit der Raumgruppe I4 (Nr. 82)Vorlage:Raumgruppe/82 und greift Glas schwach an.[3][6] Beim Erhitzen im Vakuum gibt sie oberhalb von 300 °C Ammoniak ab. Der quantitative Abbau zu Lithiumimid erfolgt jedoch erst bei 400 °C und erst oberhalb 750–800 °C zersetzt sie sich unter Abgabe von Stickstoff, Wasserstoff und Ammoniak.[6]

Verwendung

Lithiumamid wird in der organischen Chemie bei Claisen-Kondensationen, bei der Alkylierung von Nitrilen und Ketonen sowie der Synthese von Ethinyl-Verbindungen und Carbinolen verwendet.[4] Sie wird weiterhin als Reagenz zur Kreuzkupplung von Arylchloriden und Aminen eingesetzt.[7]

Einzelnachweise

  1. W.I.F. David, M.O. Jones, D.H. Gregory, C.M. Jewell, S.R. Johnson, A. Walton, P.P. Edwards: A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. In: Journal of the American Chemical Society, 2007, 129(6), S. 1594–1601 doi:10.1021/ja066016s.
  2. Datenblatt Lithiumamid (PDF) bei Merck, abgerufen am 27. März 2013.
  3. Roger Blachnik (Hrsg.): Taschenbuch für Chemiker und Physiker. Band III: Elemente, anorganische Verbindungen und Materialien, Minerale. begründet von Jean d’Ans, Ellen Lax. 4., neubearbeitete und revidierte Auflage. Springer, Berlin 1998, ISBN 3-540-60035-3, S. 536 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Eintrag zu LITHIUM AMIDE in der Hazardous Substances Data Bank, abgerufen am 28. März 2013 (online auf PubChem).
  5. A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 666.
  6. Georg Brauer (Hrsg.), unter Mitarbeit von Marianne Baudler u. a.: Handbuch der Präparativen Anorganischen Chemie. 3., umgearbeitete Auflage. Band I, Ferdinand Enke, Stuttgart 1975, ISBN 3-432-02328-6, S. 448.
  7. Datenblatt Lithium amide, powder, 95% bei Sigma-Aldrich, abgerufen am 28. März 2013 (PDF).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.