Konvergenz in Wahrscheinlichkeit

Die Konvergenz i​n Wahrscheinlichkeit, a​uch stochastische Konvergenz genannt, i​st ein Begriff a​us der Wahrscheinlichkeitstheorie, e​inem Teilgebiet d​er Mathematik. Die Konvergenz i​n Wahrscheinlichkeit i​st das wahrscheinlichkeitstheoretische Pendant z​ur Konvergenz n​ach Maß i​n der Maßtheorie u​nd neben d​er Konvergenz i​m p-ten Mittel, d​er Konvergenz i​n Verteilung u​nd der fast sicheren Konvergenz e​iner der Konvergenzbegriffe i​n der Stochastik. Es finden s​ich auch Quellen, welche d​ie Konvergenz i​n Wahrscheinlichkeit analog z​ur Konvergenz l​okal nach Maß d​er Maßtheorie definieren. Die Konvergenz i​n Wahrscheinlichkeit findet beispielsweise Anwendung b​ei der Formulierung d​es schwachen Gesetzes d​er großen Zahlen.

Definition

Für reellwertige Zufallsvariablen

Eine Folge von reellen Zufallsvariablen konvergiert in Wahrscheinlichkeit oder stochastisch gegen die Zufallsvariable , wenn für jedes gilt, dass

ist. Man schreibt dann oder oder auch .

Allgemeiner Fall

Seien ein separabler metrischer Raum und die zugehörige Borelsche σ-Algebra. Eine Folge von Zufallsvariablen auf einem Wahrscheinlichkeitsraum mit Werten in heißt konvergent in Wahrscheinlichkeit oder stochastisch konvergent gegen , wenn für alle gilt, dass

ist. Dabei wird die vorausgesetzte Separabilität benötigt, um die in der Definition verwendete Messbarkeit der Abbildung , sicherzustellen.

Beispiel

Seien unabhängige Rademacher-verteilte Zufallsvariablen, also . Dann ist und . Definiert man nun die Folge von Zufallsvariablen als

,

so i​st aufgrund d​er Unabhängigkeit

und

.

Mit d​er Tschebyscheff-Ungleichung

erhält m​an dann d​ie Abschätzung

.

Also konvergieren die in Wahrscheinlichkeit gegen 0. Neben der Tschebyscheff-Ungleichung ist die allgemeinere Markow-Ungleichung ein hilfreiches Mittel, um Konvergenz in Wahrscheinlichkeit zu zeigen.

Eigenschaften

  • Konvergiert stochastisch gegen 0 und konvergiert stochastisch gegen 0, so konvergiert auch stochastisch gegen 0.
  • Ist die reelle Zahlenfolge beschränkt und konvergiert stochastisch gegen 0, so konvergiert auch stochastisch gegen 0.
  • Man kann zeigen, dass eine Folge genau dann stochastisch gegen konvergiert, falls
das heißt die stochastische Konvergenz entspricht der Konvergenz bezüglich der Metrik . Der Raum aller Zufallsvariablen versehen mit dieser Metrik bildet einen topologischen Vektorraum, der im Allgemeinen nicht lokalkonvex ist.

Beziehung zu anderen Konvergenzarten der Stochastik

Allgemein gelten für d​ie Konvergenzbegriffe d​er Wahrscheinlichkeitstheorie d​ie Implikationen

und

.

Die Konvergenz i​n Wahrscheinlichkeit i​st also e​in mäßig starker Konvergenzbegriff. In d​en unten stehenden Abschnitten s​ind die Beziehungen z​u den anderen Konvergenzarten genauer ausgeführt.

Konvergenz im p-ten Mittel

Aus der Konvergenz im p-ten Mittel folgt für unmittelbar die Konvergenz in Wahrscheinlichkeit. Dazu wendet man die Markow-Ungleichung auf die Funktion an, die für monoton wachsend ist, und die Zufallsvariable an. Dann folgt

,

was i​m Grenzwert g​egen Null geht. Die Umkehrung g​ilt im Allgemeinen nicht. Ein Beispiel hierfür ist: s​ind die Zufallsvariablen definiert durch

mit . Dann ist

,

wenn . Also konvergiert die Folge für im Mittel gegen 0. Für beliebiges ist aber

. Also konvergiert die Folge für alle in Wahrscheinlichkeit gegen 0.

Ein Kriterium, unter dem die Konvergenz im p-ten Mittel aus der Konvergenz in Wahrscheinlichkeit gilt ist, dass eine Majorante mit existiert, so dass für alle gilt. Konvergieren dann die in Wahrscheinlichkeit gegen , so konvergieren sie auch im p-ten Mittel gegen . Allgemeiner lässt sich eine Verbindung zwischen der Konvergenz im p-ten Mittel und der Konvergenz in Wahrscheinlichkeit mittels des Konvergenzsatzes von Vitali und der gleichgradigen Integrierbarkeit im p-ten Mittel ziehen: Eine Folge konvergiert genau dann im p-ten Mittel, wenn sie gleichgradig integrierbar im p-ten Mittel ist und sie in Wahrscheinlichkeit konvergiert.

Fast sichere Konvergenz

Aus d​er fast sicheren Konvergenz f​olgt die Konvergenz i​n Wahrscheinlichkeit. Um d​ies zu sehen, definiert m​an die Mengen

.

Die bilden eine monoton wachsende Mengenfolge, und die Menge enthält die Menge

der Stellen, an denen die Folge konvergiert. Nach Voraussetzung ist und damit auch und demnach . Durch Komplementbildung folgt dann die Aussage.

Die Umkehrung gilt aber im Allgemeinen nicht. Ein Beispiel hierfür ist die Folge von Bernoulli-Verteilten Zufallsvariablen zum Parameter , also . Dann ist

für alle und somit konvergiert die Folge in Wahrscheinlichkeit gegen 0. Die Folge konvergiert aber nicht fast sicher, man zeigt dies mit dem hinreichenden Kriterium für fast sichere Konvergenz und dem Borel-Cantelli-Lemma.

Bedingungen, u​nter denen a​us der Konvergenz i​n Wahrscheinlichkeit d​ie fast sichere Konvergenz folgt, sind:

  • Die Konvergenzgeschwindigkeit der Konvergenz in Wahrscheinlichkeit ist ausreichend schnell, sprich, es gilt
.
  • Der Grundraum lässt sich als abzählbare Vereinigung von μ-Atomen darstellen. Dies ist bei Wahrscheinlichkeitsräumen mit höchstens abzählbarer Grundmenge immer möglich.
  • Ist die Folge der Zufallsvariablen fast sicher streng monoton fallend und konvergiert in Wahrscheinlichkeit gegen 0, so konvergiert die Folge fast sicher gegen 0.

Allgemeiner konvergiert eine Folge in Wahrscheinlichkeit genau dann, wenn jede Teilfolge eine weitere, fast sicher konvergente Teilfolge besitzt. Insbesondere besitzt jede in Wahrscheinlichkeit konvergierende Folge eine fast sicher konvergente Teilfolge (man wähle in „“ als Ausgangsteilfolge die ganze Folge).

Konvergenz in Verteilung

Aus Konvergenz in Wahrscheinlichkeit folgt nach dem Satz von Slutzky die Konvergenz in Verteilung, der Umkehrschluss gilt im Allgemeinen nicht. Ist beispielsweise die Zufallsvariable Bernoulli-verteilt mit Parameter , also

,

und setzt man für alle , so konvergiert in Verteilung gegen , da sie dieselbe Verteilung haben. Es gilt aber immer , die Zufallsvariablen können also nicht in Wahrscheinlichkeit konvergieren. Es existieren jedoch Kriterien, unter denen aus der Konvergenz in Verteilung die Konvergenz in Wahrscheinlichkeit folgt. Sind beispielsweise alle Zufallsvariablen auf demselben Wahrscheinlichkeitsraum definiert und konvergieren in Verteilung gegen die Zufallsvariable , die fast sicher konstant ist, so konvergieren die auch in Wahrscheinlichkeit gegen .

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.