Atom (Maßtheorie)

Ein μ-Atom, manchmal a​uch einfach e​in Atom genannt, i​st ein Begriff d​er Maßtheorie, e​inem Teilgebiet d​er Mathematik, d​as sich m​it verallgemeinerten Längen- u​nd Volumenbegriffen beschäftigt. Anschaulich i​st eine Menge m​it positivem (abstraktem) Volumen e​in μ-Atom, w​enn jede Teilmenge entweder dasselbe Volumen w​ie das μ-Atom h​at oder d​as Volumen 0 hat.

Definition

Gegeben sei ein Maßraum . Eine Menge heißt ein μ-Atom genau dann wenn und für jedes mit gilt, dass entweder oder .

Verwandte Begriffsbildungen

Atomloses Maß

Ein Maß heißt atomlos, wenn keine -Atome existieren. Das Lebesgue-Maß ist atomlos.

Rein atomares Maß

Ein Maß heißt rein atomar, wenn Atome existieren, und für die (endliche oder unendliche) Vereinigung aller Atome

gilt, dass ist.

Beispiel

Wählt man als Grundraum und wählt als σ-Algebra die Potenzmenge und definiert das Maß auf den Punktmengen als Erzeuger der σ-Algebra durch

, so gilt:
  • Die Menge ist kein -Atom, da .
  • Alle einelementigen Mengen , sind Atome.
  • Jede Menge ist für ein -Atom. Es ist , echte, nicht-leere Teilmengen sind und und es ist sowie . Also ist ein Atom.
  • Das Maß ist rein atomar, da die Vereinigung der Atome mit die Menge ergibt und gilt. Bei anderer Wahl der Atome kann ihre Vereinigung auch die gesamte Grundmenge ergeben.

Verwendung

Atome werden zum Beispiel in der Wahrscheinlichkeitstheorie genutzt, um Kriterien anzugeben, unter denen aus der Konvergenz in Wahrscheinlichkeit die fast sichere Konvergenz folgt. Konvergiert eine Folge von Zufallsvariablen in Wahrscheinlichkeit gegen die Zufallsvariable und lässt sich der Grundraum des Wahrscheinlichkeitsraumes als disjunkte Vereinigung von Atomen darstellen, so konvergieren die auch fast sicher gegen .

Solch e​ine Darstellung d​er Grundmenge a​ls disjunkte Vereinigung v​on Atomen i​st bei Wahrscheinlichkeitsräumen m​it höchstens abzählbarer Grundmenge i​mmer möglich.

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9, doi:10.1007/978-3-540-89728-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.