Elektrostatisches Einheitensystem
Das elektrostatische Einheitensystem (kurz ESU für electrostatic units, deutsch esE für elektrostatische Einheiten) ist ein physikalisches Einheitensystem, das auf dem CGS-System der Mechanik aufbaut und dieses um elektromagnetische Einheiten ergänzt.
Definition
Das elektrostatische Einheitensystem basiert auf der weitestgehenden Vereinfachung des Coulomb-Gesetzes der Elektrostatik, welche die Kraft zwischen zwei elektrischen Ladungen und in Abhängigkeit von ihrem Abstand bestimmt:
Die Coulomb-Konstante ist im elektrostatischen Einheitensystem gleich der Zahl Eins.
Die Maßeinheit für die Kraft ist in allen Varianten des CGS-Systems das Dyn: 1 dyn = 1 g · cm/s2, Abstände werden in cm gemessen. Die elektrostatische Ladungseineheit Statcoulomb (statC), auch Franklin (Fr) genannt, ist also so definiert, dass zwei Ladungen von 1 statC im Abstand von 1 cm eine Kraft von 1 dyn erfahren.
Somit gilt
Die so definierte Einheit Statcoulomb wird auch im Gaußschen Einheitensystem verwendet.
Die Konstante hat im elektromagnetischen CGS-System (EMU) den Wert und im SI-System den Wert . Dabei ist die Lichtgeschwindigkeit im Vakuum und die elektrische Feldkonstante. Die Einheiten haben also je nach System unterschiedliche Dimensionen.
[esu] als Platzhalter
In Rechnungen im cgs-System wird die Abkürzung [esu] als Platzhalter für eine konkrete Einheit verwendet. Dabei wird esu oft in eckige Klammern gesetzt, um nicht mit einer konkreten Einheit verwechselt zu werden.
Zum Beispiel gilt
- für die elektrische Ladung:
- für die elektrische Stromstärke:
- für die elektrische Kapazität:
Siehe auch die folgende Tabelle.
Vergleich mit anderen Einheitensystemen
Größe | Einheit | in Basiseinheiten | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SI | esE | Gauß | emE | SI | Gauß | ||||||
Ladung | Q | 1 Coulomb (C) | = A·s | 3·109 | statC (Fr) | 10−1 | abC | A·s | g1/2·cm3/2·s−1 | ||
Stromstärke | I | 1 Ampere (A) | = C/s | 3·109 | statA | 10−1 | abA (Bi) | A | g1/2·cm3/2·s−2 | ||
Spannung | U | 1 Volt (V) | = W/A | 1⁄3·10−2 | statV | 108 | abV | kg·m2·s−3·A−1 | g1/2·cm1/2·s−1 | ||
elektrische Feldstärke | E | 1 V/m | = N/C | 1⁄3·10−4 | statV/cm | 106 | abV/cm | kg·m·s−3·A−1 | g1/2·cm−1/2·s−1 | ||
elektrische Flussdichte | D | 1 C/m2 | 4π·3·105 | statC/cm2 | 4π·10−5 | abC/cm2 | A·s·m−2 | g1/2·cm−1/2·s−1 | |||
Polarisation | P | 1 C/m2 | 3·105 | statC/cm2 | 10−5 | abC/cm2 | A·s·m−2 | g1/2·cm−1/2·s−1 | |||
elektrisches Dipolmoment | p | 1 C·m | 3·1011 | statC·cm | 101 | abC·cm | A·s·m | g1/2·cm5/2·s−1 | |||
Widerstand | R | 1 Ohm (Ω) | = V/A | 1⁄9·10−11 | s/cm | 109 | abΩ | kg·m2·s−3·A−2 | cm−1·s | ||
Elektrischer Leitwert | G | 1 Siemens (S) | = 1/Ω | 9·1011 | cm/s | 10−9 | s/cm | kg−1·m−2·s3·A2 | cm·s−1 | ||
spezifischer Widerstand | ρ | 1 Ω·m | 1⁄9·10−9 | s | 1011 | abΩ·cm | kg·m3·s−3·A−2 | s | |||
Kapazität | C | 1 Farad (F) | = C/V | 9·1011 | cm | 10−9 | abF | kg−1·m−2·s4·A2 | cm | ||
Induktivität | L | 1 Henry (H) | = Wb/A | 1⁄9·10−11 | statH | 109 | abH (cm) | kg·m2·s−2·A−2 | cm−1·s2 | ||
magnetische Flussdichte | B | 1 Tesla (T) | = Wb/m2 | 1⁄3·10−6 | statT | 104 | G | kg·s−2·A−1 | g1/2·cm−1/2·s−1 | ||
magnetischer Fluss | Φ | 1 Weber (Wb) | = V·s | 1⁄3·10−2 | statT·cm2 | 108 | G·cm2 (Mx) | kg·m2·s−2·A−1 | g1/2·cm3/2·s−1 | ||
magnetische Feldstärke | H | 1 A/m | 4π·3·107 | statA/cm | 4π·10−3 | Oe | A·m−1 | g1/2·cm−1/2·s−1 | |||
Magnetisierung | M | 1 A/m | 3·107 | statA/cm | 10−3 | Oe | A·m−1 | g1/2·cm−1/2·s−1 | |||
magnetische Durchflutung | Θ | 1 A | 4π·3·109 | statA | 4π·10−1 | Oe·cm (Gb) | A | g1/2·cm1/2·s−1 | |||
magnetisches Dipolmoment | m | 1 A·m2 | = J/T | 3·1013 | statA·cm2 | 103 | abA·cm2 (= erg/G) | m2·A | g1/2·cm5/2·s−1 |
Die beim esE auftretenden Faktoren 3 und 9 (bzw. 1⁄3 und 1⁄9) ergeben sich aus dem Zahlenwert der Lichtgeschwindigkeit c in cm/s und sind gerundet. Vor der Revision des SI von 2019, als das Ampere noch über das ampèresche Kraftgesetz definiert war, betrug der Wert exakt 2,99792458 bzw. das Quadrat dieser Zahl. Die Zehnerpotenzen ergeben sich daraus, dass „Volt“ und „Ohm“ ursprünglich als 108 bzw. 109 emE-Einheiten definiert wurden.