Elektromagnetisches Einheitensystem
Das elektromagnetische Einheitensystem (emE, englisch EMU für electromagnetic units) ist ein physikalisches Einheitensystem, das auf dem CGS-System der Mechanik aufbaut und dieses um elektromagnetische Einheiten ergänzt. Das Gaußsche Einheitensystem basiert in Teilen auf diesem System.
Definition
Im elektromagnetischen Einheitensystem ist das ampèresche Kraftgesetz für parallele Leiter so definiert, dass in der Formel
die Proportionalitätskonstante k einfach die Zahl Eins ist. Die elektromagnetische Einheit (e.m.u.) des Stroms ist somit definiert als der Strom, der durch zwei parallele Leiter im Abstand d = 1 cm fließt, wenn sie pro Leiterstück der Länge ℓ = 1 cm eine Kraft von 2 dyn aufeinander ausüben. Diese Einheit der Stromstärke, Abampere oder Biot genannt, ist somit:
- .
Davon lassen sich die anderen elektromagnetischen Einheiten dieses Systems ableiten.
Bedeutung
Das elektromagnetische Einheitensystem in seiner Reinform wird heute nicht mehr verwendet, aber das Gaußsche Einheitensystem, das verbreitetste CGS-System, hat einen Teil davon übernommen, insbesondere die Maßeinheiten Gauß und Oersted zur Beschreibung von Magnetfeldern, die auch heute noch in Gebrauch sind.
1881 definierte der Internationale Elektrizitätskongress die Einheiten Volt, Ampere und Ohm basierend auf den elektromagnetische Einheiten (e.m.u.) mit der Definition 1 V = 108 e.m.u., 1 A = 10−1 e.m.u. und 1 Ω = 109 e.m.u.,[1] um Einheiten in „handlicher“ Größenordnung zu erhalten. Dies erwies sich als eine sehr glückliche Wahl, denn daraus folgte 1 V·1 A = 107 erg/s. Da 107 erg gerade einem Joule entsprechen, konnten die so definierten Einheiten 1939 problemlos in das MKSA-System übernommen werden.
Die Definition des Ampere über das amperèsche Kraftgesetz galt bis zur Revision des Internationalen Einheitensystems im Jahr 2019.
Vergleich mit anderen Einheitensystemen
Größe | Einheit | in Basiseinheiten | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SI | esE | Gauß | emE | SI | Gauß | ||||||
Ladung | Q | 1 Coulomb (C) | = A·s | 3·109 | statC (Fr) | 10−1 | abC | A·s | g1/2·cm3/2·s−1 | ||
Stromstärke | I | 1 Ampere (A) | = C/s | 3·109 | statA | 10−1 | abA (Bi) | A | g1/2·cm3/2·s−2 | ||
Spannung | U | 1 Volt (V) | = W/A | 1⁄3·10−2 | statV | 108 | abV | kg·m2·s−3·A−1 | g1/2·cm1/2·s−1 | ||
elektrische Feldstärke | E | 1 V/m | = N/C | 1⁄3·10−4 | statV/cm | 106 | abV/cm | kg·m·s−3·A−1 | g1/2·cm−1/2·s−1 | ||
elektrische Flussdichte | D | 1 C/m2 | 4π·3·105 | statC/cm2 | 4π·10−5 | abC/cm2 | A·s·m−2 | g1/2·cm−1/2·s−1 | |||
Polarisation | P | 1 C/m2 | 3·105 | statC/cm2 | 10−5 | abC/cm2 | A·s·m−2 | g1/2·cm−1/2·s−1 | |||
elektrisches Dipolmoment | p | 1 C·m | 3·1011 | statC·cm | 101 | abC·cm | A·s·m | g1/2·cm5/2·s−1 | |||
Widerstand | R | 1 Ohm (Ω) | = V/A | 1⁄9·10−11 | s/cm | 109 | abΩ | kg·m2·s−3·A−2 | cm−1·s | ||
Elektrischer Leitwert | G | 1 Siemens (S) | = 1/Ω | 9·1011 | cm/s | 10−9 | s/cm | kg−1·m−2·s3·A2 | cm·s−1 | ||
spezifischer Widerstand | ρ | 1 Ω·m | 1⁄9·10−9 | s | 1011 | abΩ·cm | kg·m3·s−3·A−2 | s | |||
Kapazität | C | 1 Farad (F) | = C/V | 9·1011 | cm | 10−9 | abF | kg−1·m−2·s4·A2 | cm | ||
Induktivität | L | 1 Henry (H) | = Wb/A | 1⁄9·10−11 | statH | 109 | abH (cm) | kg·m2·s−2·A−2 | cm−1·s2 | ||
magnetische Flussdichte | B | 1 Tesla (T) | = Wb/m2 | 1⁄3·10−6 | statT | 104 | G | kg·s−2·A−1 | g1/2·cm−1/2·s−1 | ||
magnetischer Fluss | Φ | 1 Weber (Wb) | = V·s | 1⁄3·10−2 | statT·cm2 | 108 | G·cm2 (Mx) | kg·m2·s−2·A−1 | g1/2·cm3/2·s−1 | ||
magnetische Feldstärke | H | 1 A/m | 4π·3·107 | statA/cm | 4π·10−3 | Oe | A·m−1 | g1/2·cm−1/2·s−1 | |||
Magnetisierung | M | 1 A/m | 3·107 | statA/cm | 10−3 | Oe | A·m−1 | g1/2·cm−1/2·s−1 | |||
magnetische Durchflutung | Θ | 1 A | 4π·3·109 | statA | 4π·10−1 | Oe·cm (Gb) | A | g1/2·cm1/2·s−1 | |||
magnetisches Dipolmoment | m | 1 A·m2 | = J/T | 3·1013 | statA·cm2 | 103 | abA·cm2 (= erg/G) | m2·A | g1/2·cm5/2·s−1 |
Die beim esE auftretenden Faktoren 3 und 9 (bzw. 1⁄3 und 1⁄9) ergeben sich aus dem Zahlenwert der Lichtgeschwindigkeit c in cm/s und sind gerundet. Vor der Revision des SI von 2019, als das Ampere noch über das ampèresche Kraftgesetz definiert war, betrug der Wert exakt 2,99792458 bzw. das Quadrat dieser Zahl. Die Zehnerpotenzen ergeben sich daraus, dass „Volt“ und „Ohm“ ursprünglich als 108 bzw. 109 emE-Einheiten definiert wurden.
Einzelnachweise
- H. G. Jerrard ua.: A Dictionary of Scientific Units: Including dimensionless numbers and scales, Springer-Science+Business Media, Southampton, 1986, S. 152. ISBN 978-94-017-0571-4