Glatter Raum

Glatte normierte Räume werden i​m mathematischen Teilgebiet d​er Funktionalanalysis untersucht. Es handelt s​ich um normierte Räume, d​eren Norm e​ine gewisse Glattheitseigenschaft hat.

Definitionen

Es sei ein normierter Raum, sei die Einheitskugel und ihr Rand, die sogenannte Einheitssphäre. Nach dem Satz von Hahn-Banach gibt es zu jedem ein stetiges, lineares Funktional mit und .

Dieses Funktional definiert die Hyperebene , die in schneidet und keinen Punkt aus dem Inneren der Einheitskugel enthält. Eine solche Hyperebene nennt man eine Stützhyperebene an , das Funktional heißt Stützfunktional an . Stellt man sich eine Hyperebene als lineare Approximation der Kugeloberfläche vor, so liegt es nahe, einen Punkt einen Glattheitspunkt zu nennen, wenn es genau eine Stützhyperebene an gibt, das heißt, wenn es genau ein gibt mit und .

Ein normierter Raum heißt glatt, w​enn jeder Punkt d​er Einheitssphäre e​in Glattheitspunkt ist. Die Einheitskugel e​ines glatten Raums i​st damit e​ine glatte konvexe Menge.

Stützabbildung

Man nennt eine Abbildung , eine Stützabbildung, falls folgendes gilt:[1]

  • Aus folgt
  • Für und gilt .

Definitionsgemäß gibt es in einem glatten Raum genau eine Stützabbildung, man kann also von der Stützabbildung eines glatten Raums sprechen. Man kann zeigen, dass diese norm-schwach*-stetig ist, das heißt stetig, wenn man auf die Normtopologie und auf die schwach-*-Topologie betrachtet.

Beispiele

Die euklidische Norm links ist glatt, die Maximumsnorm rechts nicht.

Zweidimensionaler Raum

Glattheit hängt von der Norm ab und kann beim Übergang zu einer äquivalenten Norm verloren gehen. Das zeigt sich schon am Beispiel des zweidimensionalen Raums . Versieht man den zweidimensionalen Raum mit der euklidischen Norm , so ist die Einheitssphäre ein Kreis und jeder Punkt hat genau eine Stützhyperebene, nämlich die Tangente an diesem Punkt, das heißt ist glatt. Betrachtet man auf dem die Maximumsnorm , so ist die „Einheitskugel“ ein Quadrat. An jeder Ecke des Quadrates gibt es unendlich viele Stützhyperebenen, alle anderen Punkte sind Glattheitspunkte. Damit ein Raum glatt ist, muss aber jeder Punkt der Einheitssphäre ein Glattheitspunkt sein, das heißt ist nicht glatt. Da die euklidische Norm und die Maximumsnorm auf dem äquivalent sind, sieht man an diesem Beispiel, dass die Glattheit beim Übergang zu einer äquivalenten Norm verloren gehen kann.

Weitere Beispiele

Charakterisierungen

Folgende Aussage über einen normierten Raum sind äquivalent:

  • ist glatt.
  • Die Norm auf ist Gâteaux-differenzierbar, das heißt für jedes und existiert .[2]
  • Jede Stützabbildung des Raums ist norm-schwach*-stetig.
  • Es gibt eine norm-schwach*-stetige Stützabbildung.[3]
  • Für jedes und jede Folge in mit folgt, dass schwach*-konvergiert.[4]
  • Jeder zwei-dimensionale Unterraum ist glatt.[5]
  • Die Orthogonalität ist rechts-additiv, das heißt aus und folgt .[6]

Dualität

Über d​ie Dualität besteht e​in enger Zusammenhang z​ur strikten Konvexität.[7][8]

  • Ein normierter Raum ist glatt, falls sein Dualraum strikt konvex ist.
  • Ein normierter Raum ist strikt konvex, falls sein Dualraum glatt ist.

Die Umkehrungen gelten i​m Allgemeinen nicht.

Renormierbarkeit

Da d​ie Glattheit b​eim Übergang z​u einer äquivalenten Norm verloren g​ehen kann, stellt s​ich in natürlicher Weise d​ie Frage, z​u welchen normierten Räumen e​s äquivalente, glatte Normen gibt, d​ie also d​urch Übergang z​u einer äquivalenten Norm g​latt werden. Solche Räume n​ennt man g​latt renormierbar.

Reflexive Räume s​ind strikt konvex renormierbar u​nd daher w​egen obiger Dualitätseigenschaften a​uch glatt renormierbar, s​ogar glatt u​nd gleichzeitig strikt konvex renormierbar. Das g​ilt allgemeiner für schwach kompakt erzeugte Räume.[9]

ist nicht glatt renormierbar.[10]

Einzelnachweise

  1. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1
  2. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Korollar 5.4.18
  3. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 1, punktweise für Banachräume formuliert
  4. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 5.4.19
  5. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 5.4.21
  6. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 4, für Banachräume formuliert
  7. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 2, für Banachräume formuliert
  8. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Sätze 5.4.5, 5.4.6
  9. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 5, §2, Korollar 2 zu Theorem 2
  10. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 4, §5, Satz 2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.