Satz von Hahn-Banach

Der Satz von Hahn-Banach (nach Hans Hahn und Stefan Banach) aus dem mathematischen Teilgebiet der Funktionalanalysis ist einer der Ausgangspunkte der Funktionalanalysis. Er sichert die Existenz von ausreichend vielen stetigen, linearen Funktionalen auf normierten Vektorräumen oder allgemeiner auf lokalkonvexen Räumen. Die Untersuchung eines Raums mit Hilfe der darauf definierten stetigen, linearen Funktionale führt zu einer weitreichenden Dualitätstheorie, die auf allgemeinen topologischen Vektorräumen in dieser Form nicht möglich ist, da eine zum Satz von Hahn-Banach analoge Aussage dort nicht gilt.

Darüber hinaus i​st der Satz v​on Hahn-Banach d​ie Grundlage für v​iele nicht-konstruktive Existenzbeweise w​ie z. B. i​m Trennungssatz o​der im Satz v​on Krein-Milman.

Der Satz w​urde im Wesentlichen s​chon 1912[1][2] v​on Eduard Helly bewiesen. Hahn erwähnt Helly i​n seiner Arbeit v​on 1927 nicht, w​ohl aber Banach i​n seiner Arbeit v​on 1929, w​enn auch n​icht in Zusammenhang m​it dem Satz selbst.[3] Beide verwenden a​ber die Ungleichung v​on Helly. Die Benennung n​ach Hahn u​nd Banach tauchte zuerst i​n einer Arbeit v​on Frederic Bohnenblust u​nd A. Sobcyzk, d​ie den Satz a​uf komplexe Räume übertrugen.[4] Ein anderer Beweis d​es Satzes v​on Hahn-Banach, d​er nicht d​ie Ungleichung v​on Helly verwendet, w​urde 1941 v​on Jean Dieudonné gegeben.[5]

Endlichdimensionaler Fall

Stellt man Vektoren eines endlichdimensionalen reellen oder komplexen Vektorraums bzgl. einer fest gewählten Basis in der Form eines Zeilenvektors dar, so kann man die jeweiligen -ten Einträge dieser Zeilenvektoren als Funktionen

auffassen (dabei ist der Grundkörper bzw. ). Ein wesentlicher Teil der Bedeutung einer solchen aus der linearen Algebra bekannten Koordinatendarstellung liegt nun darin, dass zwei Vektoren genau dann gleich sind, wenn alle ihre Koordinaten übereinstimmen:

Die Koordinatenfunktionen trennen daher die Punkte, d. h., sind verschiedene Vektoren, dann gibt es einen Index , so dass ist. Die sind stetige lineare Funktionale auf dem Koordinatenraum.

In unendlichdimensionalen Räumen gibt es i. d. R. keine den Koordinatenfunktionen vergleichbare Konstruktion, wenn man dabei auf Stetigkeit der Koordinaten besteht. Der Satz von Hahn-Banach impliziert aber, dass die Menge aller stetigen linearen Funktionale auf einem normierten Raum (oder allgemeiner auf einem lokalkonvexen Raum) die Punkte trennt.

Formulierung

Es sei ein Vektorraum über .

Es s​eien nun

  • ein linearer Unterraum;
  • eine sublineare Abbildung;
  • ein lineares Funktional, für das für alle gilt.

Dann gibt es ein lineares Funktional , so dass

  • und

für alle gilt.

Der Beweis dieses grundlegenden Satzes ist nicht konstruktiv. Man betrachtet die Menge aller Fortsetzungen von auf Teilräume mit , für die für alle gilt. Dann zeigt man mit dem Lemma von Zorn, dass die Menge aller solchen Fortsetzungen maximale Elemente besitzt und dass ein solches maximales Element eine gesuchte Fortsetzung ist.

Korollare

Häufig i​st eine d​er folgenden Aussagen, d​ie leicht a​us obigem Satz hergeleitet werden können, gemeint, w​enn der Satz v​on Hahn-Banach zitiert wird:

  • Ist ein normierter Raum, so gibt es für jedes ein lineares Funktional mit Norm , für das gilt. Sind verschiedene Vektoren, so erhält man die oben erwähnte Eigenschaft der Punktetrennung, indem man dies auf anwendet.
  • Ist allgemeiner ein normierter Raum, ein Unterraum, und liegt nicht im Abschluss von , so gibt es ein lineares Funktional mit Norm , das auf verschwindet und für das gilt.
  • Ist ein normierter Raum, ein Teilraum und ein stetiges lineares Funktional auf , so kann zu einem stetigen linearen Funktional derselben Norm auf ganz fortgesetzt werden. Anders ausgedrückt: Die Einschränkung von Funktionalen ist eine surjektive Abbildung der Dualräume.
  • Ist ein normierter Raum, so ist ein Unterraum genau dann dicht in , falls aus und stets folgt.[6]
  • Weitere Folgerungen geometrischer Art finden sich im Artikel Trennungssatz.

Literatur

Einzelnachweise

  1. Helly, Über lineare Funktionaloperatoren, Sitzungsberichte Akad. Wiss. Wien, Band 121, 1912, S. 265–297
  2. Harry Hochstadt: Eduard Helly, father of the Hahn-Banach theorem, The Mathematical Intelligencer, Band 2, 1980, Nr. 3, S. 123–125. Nach Hochstadt ist Helly's Beweis vollständig modern in der Form und identisch mit dem Standardbeweis.
  3. Helly benutzte den Satz von Hahn-Banach als Lemma für einen Beweis eines Satzes von Riesz, auf den sich Banach in der Referenz zu Helly bezog.
  4. Bohnenblust, Sobcyzk, Extensions of functionals on complete linear spaces, Bull. AMS, Band 44, 1938, S. 91–93. Sie verweisen darauf das ihr Beweis identisch mit dem von Francis J. Murray von 1936 ist (Murray, Linear transformations in , p >1, Trans. AMS, Band 39, 1936, S. 83–100), der sich wiederum auf Banach bezieht aber nicht von Satz von Hahn-Banach spricht.
  5. Dieudonné, Sur le Théoréme de Hahn-Banach, La Rev. Sci. 79, 1941, S. 642–643.
  6. Dirk Werner: Funktionalanalysis, Springer, 2000, Korollar III.1.9
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.