Ebenengleichung

Eine Ebenengleichung i​st in d​er Mathematik e​ine Gleichung, d​ie eine Ebene i​m dreidimensionalen Raum beschreibt. Eine Ebene besteht d​abei aus denjenigen Punkten i​n einem kartesischen Koordinatensystem, d​eren Koordinatenvektoren d​ie Ebenengleichung erfüllen.

Ebenengleichungen und ihre Beziehungen

Stehen d​ie einzelnen Koordinaten d​er Ebenenpunkte i​n einer Gleichungsbeziehung, spricht m​an von e​iner Koordinatengleichung, z​u denen d​ie Koordinatenform u​nd die Achsenabschnittsform gehören. Stehen d​ie Ortsvektoren d​er Ebenenpunkte i​n der Gleichung, handelt e​s sich u​m eine Vektorgleichung, z​u denen d​ie Parameterform u​nd die Dreipunkteform gehören. Enthält d​ie Gleichung e​inen Normalenvektor d​er Ebene, s​o spricht m​an von e​iner Normalengleichung, z​u denen d​ie Normalenform u​nd die Hessesche Normalform gehören.

Durch Vektorgleichungen können a​uch Ebenen i​n höherdimensionalen Räumen dargestellt werden, während Koordinatengleichungen u​nd Normalengleichungen i​n diesem Fall Hyperebenen beschreiben.

Koordinatengleichungen

In der analytischen Geometrie wird jeder Punkt im dreidimensionalen Raum mit Hilfe eines kartesischen Koordinatensystems durch ein Koordinatentupel identifiziert. Eine Gleichung mit den Unbekannten , und beschreibt dann eine Menge von Punkten im Raum, und zwar diejenigen Punkte, deren Koordinaten die Gleichung erfüllen. Ebenen sind nun dadurch ausgezeichnet, dass es sich bei einer solchen Gleichung um eine lineare Gleichung handelt. Zur Notation von Ebenen werden verschiedene Schreibweisen verwendet. Die vor allem in der Schulmathematik gebräuchliche Schreibweise

bedeutet, dass die Ebene aus denjenigen Punkten besteht, deren Koordinaten die Ebenengleichung erfüllen. Die in der höheren Mathematik verwendete Mengenschreibweise lautet entsprechend

.

Für Ebenengleichungen g​ibt es n​un unterschiedliche Darstellungsformen, j​e nachdem welche Kenngrößen d​er Ebene vorgeschrieben sind.

Koordinatenform

Koordinatenform

Bei der Koordinatenform wird eine Ebene durch vier reelle Zahlen , , und beschrieben. Eine Ebene besteht dann aus denjenigen Punkten, deren Koordinaten die Gleichung

erfüllen. Hierbei muss mindestens eine der drei Zahlen ungleich null sein. Die Koordinatenform entspricht der Normalenform (siehe unten) nach Ausmultiplizieren, wobei , und die Komponenten des (nicht notwendigerweise normierten) Normalenvektors sind und gesetzt wird, wobei der Stützvektor der Ebene ist (siehe unten). Der Abstand der Ebene vom Koordinatenursprung ist dann durch gegeben. Ist der Normalenvektor normiert, dann beträgt der Abstand gerade .

Achsenabschnittsform

Achsenabschnittsform

Bei der Achsenabschnittsform wird eine Ebene, die keine Ursprungsebene ist, durch drei Achsenabschnitte , und beschrieben. Eine Ebene besteht dann aus denjenigen Punkten, deren Koordinaten die Gleichung

erfüllen. Hierbei sind , und die Schnittpunkte der Ebene mit den drei Koordinatenachsen, die auch als Spurpunkte bezeichnet werden. Die Schnittgeraden der Ebene mit den drei Koordinatenebenen heißen Spurgeraden und bilden das Spurdreieck. Verläuft eine Ebene parallel zu einer oder zwei Koordinatenachsen, dann fällt der jeweilige Spurpunkt und damit auch der entsprechende Term in der Achsenabschnittsform weg. Die Achsenabschnittsform kann aus der Koordinatenform mittels Division durch errechnet werden.

Vektorgleichungen

Ebenen werden häufig auch mit Hilfe von Vektoren beschrieben. Eine Ebene besteht dann aus der Menge von Punkten, deren Ortsvektoren die Ebenengleichung erfüllen. Der Ortsvektor eines Punkts wird üblicherweise als Spaltenvektor

notiert. Vektorgleichungen s​ind dann komponentenweise z​u verstehen, d​as heißt j​ede Komponente d​es Vektors m​uss die Gleichung erfüllen. Dabei w​ird jeder Punkt d​er Ebene i​n Abhängigkeit v​on zwei reellen Parametern beschrieben. Auf d​iese Weise erhält m​an eine Parameterdarstellung d​er Ebene.

Parameterform

Parameterform

Bei der Parameterform oder Punktrichtungsform wird eine Ebene durch einen Stützvektor und zwei Richtungsvektoren und beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren die Gleichung

  mit  

erfüllen. Der Stützvektor ist dabei der Ortsvektor eines beliebigen Punkts in der Ebene, der auch als Stützpunkt oder Aufpunkt bezeichnet wird. Die beiden Richtungsvektoren, auch Spannvektoren genannt, müssen in der Ebene liegen und ungleich dem Nullvektor sein. Sie dürfen auch nicht kollinear sein, das heißt darf kein Vielfaches von sein und umgekehrt. Die Richtungsvektoren spannen ein affines Koordinatensystem auf, wobei die affinen Koordinaten eines Punkts der Ebene sind. Jedem Wertepaar dieser Parameter entspricht dann genau ein Punkt der Ebene.

Dreipunkteform

Dreipunkteform

Bei der Dreipunkteform wird eine Ebene durch die Ortsvektoren , und dreier Punkte der Ebene beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren die Gleichung

  mit  

erfüllen. Die drei Punkte dürfen dabei nicht alle auf einer Geraden liegen. Auch hier entspricht jedem Wertepaar der Parameter genau ein Punkt der Ebene. Aus der Dreipunkteform erhält man die Punktrichtungsform, indem man einen der drei Punkte als Aufpunkt auswählt und als Richtungsvektoren die Verbindungsvektoren von diesem Punkt zu den anderen beiden Punkten wählt. Eine verwandte Darstellung einer Ebene mit Hilfe dreier Ebenenpunkte verwendet baryzentrische Koordinaten.

Normalengleichungen

Bei d​en Normalenformen e​iner Ebenengleichung werden d​ie Punkte d​er Ebene d​urch eine skalare Gleichung m​it Hilfe e​ines Normalenvektors d​er Ebene charakterisiert. Hierzu w​ird das Skalarprodukt zweier Vektoren verwendet, d​as durch

definiert wird. Auf d​iese Weise erhält m​an eine implizite Darstellung d​er Ebene.

Normalenform

Normalenform

Bei der Normalenform wird eine Ebene durch einen Stützvektor und einen Normalenvektor beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren die Gleichung

erfüllen. Das Skalarprodukt zweier Vektoren (ungleich dem Nullvektor) ist genau dann gleich null, wenn die beiden Vektoren senkrecht aufeinander stehen. In der Normalenform besteht eine Ebene demnach aus denjenigen Punkten im Raum, für die der Differenzvektor aus Ortsvektor und Stützvektor senkrecht zum Normalenvektor der Ebene steht. Aus zwei Spannvektoren der Ebene und lässt sich ein Normalenvektor der Ebene über das Kreuzprodukt ermitteln.

Hessesche Normalform

Hessesche Normalform

Bei der hesseschen Normalform wird eine Ebene durch einen normierten und orientierten Normalenvektor und den Abstand vom Koordinatenursprung beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren die Gleichung

erfüllen. Der Normalenvektor muss hierbei die Länge eins haben und vom Koordinatenursprung in Richtung der Ebene zeigen. Man erhält die hessesche Normalform aus der Normalenform durch Normierung und Orientierung des Normalenvektors sowie durch anschließende Wahl von . Die hessesche Normalform erlaubt eine effiziente Berechnung des Abstands eines beliebigen Punkts im Raum zu der Ebene, denn das Skalarprodukt entspricht gerade der Länge der Orthogonalprojektion eines beliebigen Vektors auf die Ursprungsgerade mit Richtungsvektor .

Verallgemeinerungen

Auch in höherdimensionalen Räumen können Ebenen betrachtet werden. Eine Ebene ist dann eine lineare 2-Mannigfaltigkeit im -dimensionalen euklidischen Raum . Die Parameterform und die Dreipunkteform behalten ihre Darstellung, wobei lediglich mit -komponentigen statt dreikomponentigen Vektoren gerechnet wird. Durch die impliziten Formen wird allerdings in höherdimensionalen Räumen keine Ebene mehr beschrieben, sondern eine Hyperebene der Dimension . Jede Ebene kann jedoch als Schnitt von Hyperebenen mit linear unabhängigen Normalenvektoren dargestellt werden und muss demnach ebenso viele Koordinatengleichungen gleichzeitig erfüllen.

Siehe auch

Literatur

  • Steffen Goebbels, Stefan Ritter: Mathematik verstehen und anwenden. Springer, 2011, ISBN 978-3-8274-2762-5.
  • Lothar Papula: Mathematische Formelsammlung: Für Ingenieure und Naturwissenschaftler. Springer, 2009, ISBN 978-3-8348-9598-1.
  • Thomas Westermann: Mathematik für Ingenieure. Springer, 2008, ISBN 978-3-540-77731-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.