Affine Koordinaten

Affine Koordinaten sind Koordinaten, die im mathematischen Teilgebiet der linearen Algebra einem Punkt eines -dimensionalen affinen Raumes bezüglich einer sogenannten affinen Punktbasis zugeordnet werden, das ist eine geordnete Menge von Punkten des Raumes mit bestimmten Eigenschaften (siehe weiter unten in diesem Artikel).

Man unterscheidet dann inhomogene affine Koordinaten, die gebräuchlichste Form, bei denen die Koordinaten eines Punktes eine geordnete Menge (Tupel) von Zahlen sind, und homogene Formen, bei denen diese Koordinaten ein -Tupel bilden.

Mit Hilfe d​er hier beschriebenen affinen Koordinatensysteme lässt s​ich eine affine Abbildung d​urch eine Abbildungsmatrix darstellen.

Affine Koordinaten stehen i​n engem Zusammenhang z​u Teilverhältnissen: Affine Koordinaten lassen s​ich in Teilverhältnisse umrechnen u​nd umgekehrt.

In d​er synthetischen Geometrie werden affine Koordinaten für affine Ebenen d​urch eine geometrische Konstruktion, d​ie Koordinatenkonstruktion, eingeführt. Dabei dienen Punkte e​iner fest gewählten Gerade d​er Ebene a​ls affine Koordinaten. Für affine Ebenen über e​inem Körper führt dieses geometrische Konzept z​u den gleichen (inhomogenen) affinen Koordinaten, w​ie das i​m vorliegenden Artikel beschriebene Vorgehen a​us der analytischen Geometrie. → Siehe z​u den affinen Koordinaten i​n der synthetischen Geometrie d​en Hauptartikel „Ternärkörper“.

Definitionen

Affines Koordinatensystem im Standardmodell

Sei ein affiner Raum mit zugehörigem -Vektorraum . Sei die Dimension von .

Dann heißen Punkte eine affine Basis, falls die Vektoren eine Basis von bilden.

In diesem Fall gibt es zu jedem eindeutig bestimmte mit und .

Dabei bedeutet die Notation , dass für einen (und damit jeden) Punkt die Gleichung in gilt.

Inhomogene, baryzentrische und homogene affine Koordinaten

Im affinen Raum gibt es keinen ausgezeichneten Nullpunkt. Eine affine Basis trägt diesem Umstand Rechnung. Wählt man einen Basisvektor beliebig aus, etwa , so ist eine Basis des zugehörigen Vektorraums. Für jedes hat man also eindeutige mit . Daraus folgt

Setzt m​an

, ,

so gilt und . In dieser Darstellung sind die Basispunkte wieder gleichberechtigt, keiner der Punkte ist irgendwie ausgezeichnet.

Die Koordinaten heißen inhomogene affine Koordinaten, heißen baryzentrische affine Koordinaten von bezüglich der Basis . Die baryzentrischen Koordinaten liefern im Gegensatz zu den inhomogenen Koordinaten auch dann formal die gleiche Darstellung des Punktes , wenn der Vektor nicht der Nullvektor des Vektorraums ist.

Als homogene affine Koordinaten bezeichnet man die -Tupel . (In der Literatur wird auch häufig verwendet). Diese Notation motiviert sich durch die Interpretation des -dimensionale affinen Punktraumes als die durch gegebene Teilmenge des projektiven Raumes . Im projektiven Raum hat man vom induzierte „homogene“ Koordinaten, wobei alle mit denselben Punkt wie beschreiben, man für also setzen kann. Die Darstellung durch homogene Koordinaten kann unter anderem verwendet werden, um beliebige affine Abbildungen mit einer (erweiterten) Abbildungsmatrix ohne Translationsvektor zu beschreiben (→ zu dieser Koordinatendarstellung siehe Hauptartikel Homogene Koordinaten, zur erweiterten Abbildungsmatrix siehe Affine Abbildung: Erweiterte Abbildungsmatrix).

Zu einer affinen Basis gibt es genau eine Affinität mit , wobei die kanonische Basis von sei. Ist nun , so können die affinen Koordinaten von bezüglich der affinen Basis im affinen Raum wie oben berechnet werden. Die Affinität wird auch affines Koordinatensystem genannt; dem liegt die Vorstellung zu Grunde, dass die Koordinaten von nach trägt. In dieser Auffassung ist der Ursprung und die Koordinatendarstellung des Ortsvektors eines Punktes .

Beispiele

Zahlenbeispiel

Sei der dreidimensionale reelle Koordinatenraum. Dann bilden die drei Punkte und zusammen mit dem Ursprung eine affine Basis. Für einen Punkt sind die Zahlen die affinen Koordinaten bezüglich dieser Basis.

Wählt man die affine Basis aus dem Ursprung und den Punkten , und , so sind die affinen Koordinaten zu einem Punkt durch gegeben, denn es gilt

Geradengleichung

Geraden sind eindimensionale affine Unterräume und je zwei verschiedene Punkte bilden eine affine Basis. Die Darstellung der Punkte von in affinen Koordinaten führt zur Geradengleichung in der sogenannten Parameterform, denn es ist

.

Gleichungssysteme

Die Lösungsmenge eines inhomogenen linearen Gleichungssystems bildet einen affinen Raum. Ist eine spezielle Lösung des inhomogenen Gleichungssystems und eine Basis des Lösungsraumes des zugehörigen homogenen Systems, so bilden eine affine Basis des affinen Lösungsraums des inhomogenen Gleichungssystems. Zu jeder Lösung gibt es daher eindeutig bestimmte mit und . Diese Betrachtung zeigt die bekannte Tatsache, dass es für ein inhomogenes lineares Gleichungssystem keine ausgezeichnete spezielle Lösung gibt.

Konvexkombinationen

Eine Konvexkombination von Punkten ist eine spezielle Darstellung in baryzentrischen affinen Koordinaten , bei der nicht nur sondern darüber hinaus auch für alle gilt.

Literatur

  • Gerd Fischer: Analytische Geometrie (= Rororo-Vieweg 35). Rowohlt, Reinbek bei Hamburg 1978, ISBN 3-499-27035-8.
  • Hermann Schaal, Ekkehart Glässner: Lineare Algebra und analytische Geometrie. Band 1. Vieweg, Braunschweig 1976, ISBN 3-528-03056-9.
  • Uwe Storch, Hartmut Wiebe: Lehrbuch der Mathematik. Für Mathematiker, Informatiker und Physiker. Band 2: Lineare Algebra. BI-Wissenschafts-Verlag, Mannheim 1990, ISBN 3-411-14101-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.