Cori-Zyklus

Der Cori-Zyklus (benannt n​ach seinen Entdeckern, Gerty Cori u​nd Carl Cori) beschreibt d​en Kreislauf v​on Glucose u​nd deren Abbauprodukten zwischen Skelettmuskel u​nd Leber. Die erweiterte Beschreibung bezieht d​ie Stoffwechselwege d​er Gluconeogenese, d​er Glutaminsäure (Glu), Teile d​es Citratzyklus u​nd den Harnstoffzyklus m​it ein.

Der Skelettmuskel i​st auch u​nter aeroben Bedingungen n​icht in d​er Lage, Lactat wieder i​n Glucose umzuwandeln: e​s fehlen i​hm die Enzyme d​er Gluconeogenese. Aus diesem Grunde besteht e​ine Zirkulation v​on Metaboliten zwischen Muskel u​nd Leber – letztere verfügt über d​as entsprechende Enzym-Repertoire. In seiner ursprünglichen Form w​urde dieser Organkreislauf a​ls „Cori-Zyklus“ bezeichnet. Eine erweiterte Form desselben, d​er „Glucose-Alanin-Zyklus“ i​st wohl v​on größerer Bedeutung, d​a er gleichzeitig e​iner Ammoniak-Vergiftung d​es Muskels vorbeugt, i​ndem er dieses d​em Entgiftungsapparat d​er Leber (dem Harnstoffzyklus) zuführt.

Cori-Zyklus

Schema Cori-Zyklus

Bei Muskelbetätigung entsteht schnell ein gewisser Sauerstoffmangel im Muskel. Unter diesen eher anaeroben Bedingungen verlangsamt sich die Atmungskette im Mitochondrium und Energie wird hauptsächlich durch die Glycolyse erzeugt. Andererseits wird Pyruvat jedoch weniger über den Citratzyklus abgebaut. Stattdessen reagiert Pyruvat anaerob zu Milchsäure. Dabei wird NAD+ für die Glycolyse regeneriert. Milchsäure wird als Lactat an den Blutkreislauf abgegeben – dieser Weg ist in der Abbildung verkürzt dargestellt (siehe Pyruvat). Die Leber nimmt Lactat aus dem Blut auf und wandelt es auf dem Wege der Gluconeogenese über Oxalacetat in Glucose zurück. Diese Glucose kann – je nach dem momentanen Status der Energieversorgung – dem Energiespeicher der Leber als Glykogen zugeführt oder an den Blutkreislauf abgegeben werden, um den Muskel erneut zu versorgen.

Dabei sollte jedoch beachtet werden, dass es sich hier nicht um einen geschlossenen Energie-Kreislauf handelt. In der Gluconeogenese in der Leber muss mehr Energie aufgewendet werden, als in der Glycolyse im Muskel erzeugt wird. Das liegt daran, dass bei der Gluconeogenese die stark endotherme Reaktion von Pyruvat zu Phosphoenolpyruvat (PEP) energieaufwendig umgangen wird, während die freiwerdende Energie bei der exothermen Reaktion von Fructose-1,6-BP zu Fructose-6-P bzw. Glucose-6-P zu Glucose nicht genutzt wird. So müssen bei der Gluconeogenese aus Pyruvat für jedes Molekül Glucose 4 ATP, 2 GTP sowie 2 NADH aufgewendet werden. Bei der Glycolyse entstehen jedoch aus einem Molekül Glucose nur 2 ATP sowie 2 NADH.

Glucose-Alanin-Zyklus

Überblick Glucose-Alanin-Zyklus

Proteine werden im Cytosol zu Aminosäuren abgebaut. Diese werden ihrerseits durch Transaminierung desaminiert und das verbleibende Kohlenstoffgerüst in den Citratzyklus eingeschleust. Die Aminogruppe der Aminosäuren wird bei der Transaminierung vorübergehend auf den Cofaktor Pyridoxalphosphat (PLP) übertragen; PLP wird so zu Pyridoxaminphosphat (PAMP). Die Alanin-Aminotransferase (ALAT, ALT) (auch Glutamat-Pyruvat-Transaminase, GPT genannt) überträgt im Muskel die Aminogruppierung von PAMP auf Pyruvat. So entstehen Alanin und regeneriertes PLP, welches so wieder neue Aminogruppen aufnehmen kann. Alanin wird über das Blut zur Leber transportiert, wo ALAT aus PLP und Alanin PAMP und Pyruvat macht, welches zur Gluconeogenese herangezogen werden kann und als Glucose wieder zurück zu den extrahepatischen Zellen geschickt wird.

Durch ALAT wird die Aminogruppe von PAMP auf α-Ketoglutarat transferiert. Das entstehende Glutamat wird in den Mitochondrien der Leberzelle durch Glutamatdehydrogenase (GLDH) zu α-Ketoglutarat und NH3, letzteres wird von der Carbamoylphosphat-Synthetase I mit CO2 zu Carbamoylphosphat umgewandelt, welches in den Harnstoffzyklus fließt. Die zweite NH2-Gruppe des Harnstoffs wird durch ein Transaminierungsprodukt des Aspartat (Asp) geliefert, das seinerseits zu Arginin und Fumarat gespalten wird. Vom Arginin wird schließlich Harnstoff abgespalten. Aus Fumarat kann über Malat und Oxalacetat zu Aspartat regeneriert werden (Aspartatzyklus). Harnstoff wird über die Niere ausgeschieden.

Im Gegensatz z​um Cori-Zyklus w​ird beim Alanin-Zyklus n​icht nur Kohlenhydrat regeneriert, sondern a​uch NH3 a​us dem Muskel abtransportiert. Dafür m​uss in d​er Harnstoffsynthese d​er Leber allerdings a​uch Energie aufgewendet werden, u​m NH3 z​u entsorgen.

Literatur

  • Jeremy M. Berg, John L. Tymoczko, Lubert Stryer: Biochemie. 6. Auflage. Spektrum Akademischer Verlag, Heidelberg 2007, ISBN 978-3-8274-1800-5.
  • Donald Voet, Judith G. Voet: Biochemistry. 3. Auflage. John Wiley & Sons, New York 2004, ISBN 0-471-19350-X.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.