Airy-Funktion

Die Airy-Funktion bezeichnet eine spezielle Funktion in der Mathematik. Die Funktion und die verwandte Funktion , die ebenfalls Airy-Funktion genannt wird, sind Lösungen der linearen Differentialgleichung

auch bekannt a​ls Airy-Gleichung. Sie beschreibt u​nter anderem d​ie Lösung d​er Schrödinger-Gleichung für e​inen linearen Potentialtopf.

Die Airy-Funktion ist nach dem britischen Astronomen George Biddell Airy benannt, der diese Funktion in seinen Arbeiten in der Optik verwendete (Airy 1838). Die Bezeichnung wurde von Harold Jeffreys eingeführt.

Definition

Für reelle Werte ist die Airy-Funktion als Parameterintegral definiert:

Eine zweite, linear unabhängige Lösung der Differentialgleichung ist die Airy-Funktion zweiter Art :

Eigenschaften

Asymptotisches Verhalten

Für gegen lassen sich und mit Hilfe der WKB-Näherung approximieren:

Für gegen gelten die Beziehungen:

Nullstellen

Die Airy-Funktionen haben nur Nullstellen auf der negativen reellen Achse.[1] Die ungefähre Lage folgt aus dem asymptotischen Verhalten für zu

Spezielle Werte

Die Airy-Funktionen und ihre Ableitungen haben für die folgenden Werte:

Hierbei bezeichnet die Gammafunktion. Es folgt, dass die Wronski-Determinante von und gleich ist.

Fourier-Transformierte

Direkt aus der Definition der Airy-Funktion (siehe oben) folgt deren Fourier-Transformierte.

Man beachte d​ie hier verwendete symmetrische Variante d​er Fourier-Transformation.

Weitere Darstellungen

  • Eine andere unendliche Integraldarstellung für lautet
  • Es gibt die Reihendarstellungen[2]

Komplexe Argumente

und sind ganze Funktionen. Sie lassen sich also auf der gesamten komplexen Ebene analytisch fortsetzen.


Verallgemeinerungen

Definiere

wobei die hypergeometrische Funktion ist. Dann gibt es folgende Verallgemeinerungen des Airy-Integrals

Verwandte Funktionen

Airy-Zeta-Funktion

Zu d​er Airy-Funktion lässt s​ich analog z​u den anderen Zeta-Funktionen d​ie Airysche Zeta-Funktion definieren als[3]

wobei die Summe über die reellen (negativen) Nullstellen von geht.

Scorersche Funktionen

Funktionsgraphen von und .

Manchmal werden auch die beiden weiteren Funktionen und zu den Airy-Funktionen dazugerechnet. Die Integral-Definitionen lauten[4]

Sie lassen sich auch durch die Funktionen und darstellen.

Literatur

Commons: Airy-Funktion – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Eric W. Weisstein: Airy Function Zeros. In: MathWorld (englisch).
  2. C. Banderier, P. Flajolet, G. Schaeffer, M. Soria: Planar Maps and Airy Phenomena. In Automata, Languages and Programming. Proceedings of the 27th International Colloquium (ICALP 2000) held at the University of Geneva, Geneva, 9.–15. Juli 2000 (Ed. U. Montanari, J. D. P. Rolim, E. Welzl). Berlin: Springer, S. 388–402, 2000
  3. Eric W. Weisstein: Airy Zeta Function. In: MathWorld (englisch).
  4. Milton Abramowitz und Irene A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1954, Seite 447
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.