Zahlentheoretische Funktion

Eine zahlentheoretische o​der arithmetische Funktion i​st eine Funktion, d​ie jeder positiven natürlichen Zahl e​ine komplexe Zahl zuordnet. Diese Funktionen dienen i​n der Zahlentheorie dazu, Eigenschaften v​on natürlichen Zahlen, besonders d​eren Teilbarkeit, z​u beschreiben u​nd zu untersuchen.

Spezielle zahlentheoretische Funktionen

Beispiele

Die ersten Werte einiger zahlentheoretischen Funktionen
n=φ(n)ω(n)Ω(n)λ(n)μ(n)Λ(n)π(n)σ0(n)σ1(n)σ2(n)r2(n)r3(n)r4(n)
11100110.000111468
22111-1-10.69123541224
33211-1-11.10224100832
422212100.69237214624
55411-1-11.613262682448
623222110.0034125002496
77611-1-11.95428500064
823413-100.6944158541224
932612101.10431391430104
1025422110.004418130824144
11111011-1-12.40521212202496
12223423-100.0056282100896
13131211-1-12.566214170824112
1427622110.006424250048192
1535822110.00642426000192
1624814100.6965313414624
17171611-1-12.837218290848144
18232623-100.007639455436312
19191811-1-12.948220362024160
20225823-100.008642546824144
21371222110.008432500048256
222111022110.008436610024288
23232211-1-13.14922453000192
24233824100.00986085002496
25522012101.6193316511230248
262131222110.009442850872336
27331813-101.109440820032320
282271223-100.009656105000192
29292811-1-13.3710230842872240
30235833-1-10.00108721300048576
31313011-1-13.431123296200256
32251615-100.6911663136541224
333112022110.00114481220048384
342171622110.00114541450848432
35572422110.00114481300048384
3622321224100.00119911911430312
37373611-1-13.61122381370824304
382191822110.00124601810072480
393132422110.0012456170000448
402351624100.00128902210824144

Wichtige arithmetische Funktionen sind

  • die identische Funktion und ihre Potenzen
  • die Dirichlet-Charaktere
  • die Teilerfunktionen
speziell ,
die die Summe aller Teiler bzw. der -ten Potenzen aller Teiler einer Zahl angeben und

Multiplikative Funktionen

Eine zahlentheoretische Funktion heißt multiplikativ, wenn für teilerfremde Zahlen und stets gilt und nicht verschwindet, was äquivalent zu ist. Sie heißt vollständig multiplikativ, auch strikt oder streng multiplikativ, wenn dies auch für nicht teilerfremde Zahlen gilt. Jede vollständig multiplikative Funktion ist also multiplikativ. Eine multiplikative Funktion lässt sich darstellen als

d. h. e​ine multiplikative Funktion i​st vollständig d​urch die Werte bestimmt, d​ie sie für Primzahlpotenzen annimmt.

  • Von den oben als Beispiele angeführten Funktionen sind die Identität und ihre Potenzen sowie die Dirichlet-Charaktere vollständig multiplikativ, die Teileranzahlfunktion, die Teilerfunktionen und die Eulersche φ-Funktion multiplikativ. Die Primzahlfunktion und die Exponentenbewertung sind nicht multiplikativ.
  • Das (punktweise) Produkt von zwei (vollständig) multiplikativen Funktionen ist wieder (vollständig) multiplikativ.

Additive Funktionen

Eine zahlentheoretische Funktion heißt additiv, wenn für teilerfremde Zahlen und stets gilt. Sie heißt vollständig additiv, auch strikt oder streng additiv, wenn dies auch für nicht teilerfremde Zahlen gilt.

Ein Beispiel für eine additive Funktion ist die -adische Exponentenbewertung. Aus jeder multiplikativen Funktion, die nirgends verschwindet, lässt sich eine additive Funktion konstruieren, indem man das Ergebnis logarithmiert. Präziser: Wenn (vollständig) multiplikativ und stets ist, dann ist eine (vollständig) additive Funktion. Gelegentlich wird auch ein (komplexer) Logarithmus einer nirgends verschwindenden zahlentheoretische Funktion (ohne Betrag) gebildet. Dabei ist jedoch wegen der verschiedenen Zweige des komplexen Logarithmus Vorsicht geboten.

Faltung

Die Faltung v​on zahlentheoretischen Funktionen w​ird nach Dirichlet a​uch als Dirichlet-Faltung bezeichnet. Zu anderen Bedeutungen d​es Wortes i​n der Mathematik s​iehe den Artikel Faltung (Mathematik).

Definition

Die Dirichlet-Faltung zweier zahlentheoretischer Funktionen i​st definiert durch

wobei sich die Summe über alle (echten und unechten, positiven) Teiler von erstreckt.

Die summatorische Funktion einer zahlentheoretischen Funktion ist definiert durch , wobei die konstante Funktion mit dem Funktionswert  bezeichnet, also

Man kann zeigen, dass bzgl. der Faltungsoperation invertierbar ist; ihr Inverses ist die (multiplikative) Möbiusfunktion . Das führt zur Möbiusschen Umkehrformel, mit der man eine zahlentheoretische Funktion aus ihrer summatorischen Funktion zurückgewinnen kann.

Eigenschaften der Faltung

  • Die Faltung von zwei multiplikativen Funktionen ist multiplikativ.
  • Die Faltung von zwei vollständig multiplikativen Funktionen muss nicht vollständig multiplikativ sein.
  • Jede zahlentheoretische Funktion , die an der Stelle  nicht verschwindet, besitzt eine Inverse bezüglich der Faltungsoperation.
  • Diese Faltungsinverse ist genau dann multiplikativ, wenn multiplikativ ist.
  • Die Faltungsinverse einer vollständig multiplikativen Funktion ist multiplikativ, aber im Allgemeinen nicht vollständig multiplikativ.
  • Das neutrale Element der Faltungsoperation ist die durch und für alle definierte Funktion

Algebraische Struktur

  • Die Menge der zahlentheoretischen Funktionen bildet mit der komponentenweisen Addition, der skalaren Multiplikation und der Faltung als innerer Multiplikation
  • Die multiplikative Gruppe dieses Ringes besteht aus den zahlentheoretischen Funktionen, die an der Stelle  nicht verschwinden.
  • Die Menge der multiplikativen Funktionen ist eine echte Untergruppe dieser Gruppe.

Abgrenzung vom Raum der komplexen Zahlenfolgen

Mit d​er komplexen Skalarmultiplikation, d​er komponentenweisen Addition u​nd – anstelle d​er Faltung – d​er komponentenweisen Multiplikation bildet d​ie Menge d​er zahlentheoretischen Funktionen ebenfalls e​ine kommutative C-Algebra, d​ie Algebra d​er formalen (nicht notwendig konvergenten) komplexen Zahlenfolgen. Diese kanonische Struktur a​ls Abbildungsraum i​st in d​er Zahlentheorie jedoch k​aum von Interesse.

Als komplexer Vektorraum (also o​hne innere Multiplikation) i​st dieser Folgenraum m​it dem Raum d​er zahlentheoretischen Funktionen identisch.

Zusammenhang mit Dirichletreihen

Jeder zahlentheoretischen Funktion k​ann eine formale Dirichletreihe zugeordnet werden. Die Faltung w​ird dann z​ur Multiplikation v​on Reihen. Diese Konstruktion w​ird im Artikel über Dirichletreihen näher beschrieben.

Siehe auch

Literatur

  • Jörg Brüdern: Einführung in die analytische Zahlentheorie. Springer-Verlag, 1995, ISBN 3-540-58821-3.
  • Peter Bundschuh: Einführung in die Zahlentheorie. 5. Auflage. Springer-Verlag, 2002, ISBN 3-540-43579-4.
  • Wolfgang Schwarz, Jürgen Spilker: Arithmetical Functions. Cambridge University Press, 1994, ISBN 0-521-42725-8.
  • Paul McCarthy: Arithmetische Funktionen. Springer Spektrum, 2017, ISBN 978-3662537312.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.