Teileranzahlfunktion

Die Teileranzahlfunktion gibt an, wie viele Teiler eine natürliche Zahl hat; dabei werden die Eins und die Zahl selbst mitgezählt. Die Teileranzahlfunktion gehört zum mathematischen Teilgebiet der Zahlentheorie. Sie wird meist mit oder bezeichnet – da sie einen Spezialfall der Teilerfunktion darstellt, auch als .

… Anzahl der Teiler von .
… kleinstes mit Teilern.
Faktorisierung
von
111
222
3422
462 · 3
51624
61222 · 3
76426
82423 · 3
93622 · 32
104824 · 3
111.024210
126022 · 3 · 5
134.096212
1419226 · 3
1514424 · 32
1612023 · 3 · 5
1765.536216
1818022 · 32 · 5
19262.144218
2024024 · 3 · 5
2157626 · 32
223.072210 · 3
234.194.304222
2436023 · 32 · 5
251.29624 · 34
2612.288212 · 3
2790022 · 32 · 52
2896026 · 3 · 5
29268.435.456228
3072024 · 32 · 5
311.073.741.824230
3284023 · 3 · 5 · 7
339.216210 · 32
34196.608216 · 3
355.18426 · 34
361.26022 · 32 · 5 · 7

Definition

Für jede natürliche Zahl wird die Teileranzahlfunktion definiert als

,

wobei die Mächtigkeit der Menge ist.

Die ersten Werte sind:[1]

123456789101112
Teiler von 1 1, 2 1, 3 1, 2, 4 1, 5 1, 2, 3, 6 1, 7 1, 2, 4, 8 1, 3, 9 1, 2, 5, 10 1, 11 1, 2, 3, 4, 6, 12
1 2 2 3 2 4 2 4 3 4 2 6

Eigenschaften

so gilt:[2]
  • Für teilerfremde Zahlen und gilt:
Die Teileranzahlfunktion ist also eine multiplikative zahlentheoretische Funktion.
  • Eine Zahl ist genau dann eine Primzahl, wenn gilt.
  • Eine Zahl ist genau dann eine Quadratzahl, wenn ungerade ist.
  • Die zur Teileranzahlfunktion gehörige Dirichlet-Reihe ist das Quadrat der riemannschen Zetafunktion:[3]
(für ).

Asymptotik

Im Mittel ist , präziser: [4]

gilt. (Dabei sind „“ ein Landau-Symbol und die Euler-Mascheroni-Konstante.)

Als Heuristik kann die Erkenntnis dienen, dass eine Zahl ein Teiler von etwa Zahlen ist, damit wird die Summe auf der linken Seite in etwa zu

(Zum letzten Schritt s​iehe harmonische Reihe.)

Der Wert wurde bereits von P. G. L. Dirichlet bewiesen;[5] die Suche nach besseren Werten ist deshalb auch als dirichletsches Teilerproblem bekannt.

Bessere Werte wurden von G. F. Woronoi (1903, ),[6] J. van der Corput (1922, )[7] sowie M. N. Huxley ()[8] angegeben. Auf der anderen Seite zeigten G. H. Hardy und E. Landau, dass gelten muss.[9] Die möglichen Werte für sind immer noch Forschungsgegenstand.

Verallgemeinerungen

Die Teilerfunktion ordnet jeder Zahl die Summe der -ten Potenzen ihrer Teiler zu:[10]

Die Teilersumme ist der Spezialfall der Teilerfunktion für , und die Teileranzahlfunktion ist der Spezialfall der Teilerfunktion für :

Siehe auch

Literatur

  • G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Auflage, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1.

Quellen

  1. Weitere Anfangswerte siehe auch Folge A000005 in OEIS.
  2. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Auflage, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1, Theorem 273, S. 239.
  3. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Auflage, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1, Theorem 289, S. 250.
  4. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Auflage, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1, Theorem 320, S. 264.
  5. P. G. L. Dirichlet: Über die Bestimmung der mittleren Werthe in der Zahlentheorie. In: Abhandlungen der Königlich Preussischen Akademie der Wissenschaften. 1849, S. 69–83; oder Werke, Band II, S. 49–66.
  6. G. Voronoï: Sur un problème du calcul des fonctions asymptotiques. In: J. Reine Angew. Math. 126 (1903) S. 241–282.
  7. J. G. van der Corput: Verschärfung der Abschätzung beim Teilerproblem. In: Math. Ann. 87 (1922) 39–65. Berichtigungen 89 (1923) S. 160.
  8. M. N. Huxley: Exponential Sums and Lattice Points III. In: Proc. London Math. Soc. Band 87, Nr. 3, 2003, S. 591–609.
  9. G. H. Hardy: On Dirichlet’s divisor problem. In: Lond. M. S. Proc. (2) 15 (1915) 1–25.
    Vgl. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Auflage, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1, S. 272.
  10. Eric W. Weisstein: Divisor Function. In: MathWorld (englisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.