S2 (Stern)

S2, a​uch S0-2[2], i​st ein Stern i​m galaktischen Zentrum. Er befindet s​ich in e​iner Umlaufbahn u​m die Radioquelle Sagittarius A* u​nd umläuft d​iese einmal i​n 16,05 Jahren. Der Stern h​at bei seiner größten Annäherung a​ns galaktische Zentrum (Periapsis) e​ine Geschwindigkeit v​on bis z​u 7650 km/s (27 Mio. km/h, 2,55 % d​er Lichtgeschwindigkeit)[3], w​as S2 z​um schnellsten bekannten ballistischen Orbit macht. Er nähert s​ich dabei b​is auf 17 Lichtstunden (122 AE, 18 Mrd. km) a​n Sagittarius A* an.[4] Das entspricht d​em 2,5fachen mittleren Abstand v​on Sonne u​nd Pluto.

Stern
S2
Orbit von S2 um Sagittarius A*
AladinLite
Beobachtungsdaten
Äquinoktium: J2000.0, Epoche: J2000.0
Sternbild Schütze
Rektaszension 17h 45m 40s
Deklination -29° 00 28
Helligkeiten
Spektrum und Indices
Spektralklasse B1 V
Astrometrie
Entfernung 26.670 Lj
Physikalische Eigenschaften
Masse 15 M
Radius 14 R
Effektive Temperatur ca. 28500 K [1]
Alter 6,6  +3,4−4,7 Mio. a [1]
Andere Bezeichnungen
und Katalogeinträge
Weitere Bezeichnungen [CRG2004] 13, [EG97] S2, [PGM2006] E1, [GPE2000] 0.15, [SOG2003] 1

S2 i​st der e​rste bekannte Stern, dessen Umlaufbahn u​m ein supermassereiches Schwarzes Loch (um e​in solches handelt e​s sich b​ei Sagittarius A* m​it an Sicherheit grenzender Wahrscheinlichkeit) tatsächlich vermessen werden konnte. Um allerdings v​on dem Schwarzen Loch (mit e​iner Masse v​on 4,1 Millionen Sonnenmassen) zerrissen u​nd verschluckt z​u werden, müsste e​r sich diesem b​is auf e​ine Entfernung v​on ungefähr 16 Lichtminuten (etwas m​ehr als d​ie Entfernung Sonne u​nd Mars) nähern. Nach d​en bisherigen Beobachtungen w​ird dies i​n absehbarer Zukunft n​icht passieren.

Im Jahre 2012 w​urde der Stern S0-102 entdeckt, welcher m​it 11,5 Jahren e​ine noch kürzere Umlaufzeit u​m Sagittarius A* hat.[2]

Im Frühjahr 2018 hatte S2 den kleinsten Abstand vom Schwarzen Loch, ein Augenblick, auf den Astronomen 16 Jahre lang gewartet hatten.[5] Es wurde erwartet, dass auch in den hier vorliegenden starken Gravitationsfeldern besonders ausgeprägte klassische Vorhersagen der Allgemeinen Relativitätstheorie (gravitative Rotverschiebung, Periheldrehung) getestet werden können, einschließlich Tests von Alternativen wie der pseudo-komplexen Gravitationstheorie von Walter Greiner und Peter O. Hess, als auch spezielle Phänomene für Schwarze Löcher nahe dem Ereignishorizont (z. B. Lense-Thirring-Effekt aufgrund der Mitführung der Raumzeit um ein rotierendes Schwarzes Loch). Außerdem erhoffte man sich Erkenntnisse zu astrophysikalischen Phänomenen wie der Bildung und Dynamik von Akkretionsscheiben (Jets, Winde) und Aussagen darüber, ob kleinere Schwarze Löcher in der Umgebung des supermassiven Schwarzen Lochs existieren. Beobachtungsprogramme existieren unter anderem am Keck-Observatorium und am Paranal-Observatorium (VLTI, Verly Large Telescope Interferometer), bei Letzterem das Konsortium GRAVITY unter Leitung von Frank Eisenhauer.[6] Im Juli 2018 gab das Gravity-Konsortium bekannt, eine gravitative Rotverschiebung in guter Übereinstimmung mit der allgemeinen Relativitätstheorie nachgewiesen zu haben.[7] Der kombinierte Effekt aus gravitativer Rotverschiebung und relativistischem Dopplereffekt betrug . Ein weiterer allgemein-relativistischer Effekt, die Apsidendrehung der Umlaufbahn, wurde 2020 nachgewiesen.[8]

Einzelnachweise

  1. Twelve Years of Spectroscopic Monitoring in the Galactic Center. Abgerufen am 22. Dezember 2021.
  2. Markus Schmalzl: Wettrennen rund um Sgr A*: Pole Position für S0-102. In: Sterne und Weltraum Nr. 2, 2013, S. 24–25.
  3. R. Abuter, A. Amorim, N. Anugu, M. Bauböck, M. Benisty: Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. In: Astronomy & Astrophysics. Band 615, Juli 2018, ISSN 0004-6361, S. L15, doi:10.1051/0004-6361/201833718 (aanda.org [abgerufen am 29. Juli 2018]).
  4. Nature 419, 694–696 (17. Oktober 2002) | doi:10.1038/nature01121; A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way
  5. Jay Bennett, Einstein’s Theory of Gravity Is About to Get a Test From a Star Passing by Supermassive Black Hole. In: Popular Mechanics, 1. März 2018, zu Beobachtungen am Keck-Observatorium.
  6. Gravity, ESO
  7. Gravity Collaboration, R. Abuter u. a.: Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. In: Astronomy & Astrophysics, Band 615, 2018, L 15, Abstract
  8. GRAVITY Collaboration, R. Abuter et al.: Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole In: Astronomy & Astrophysics, Band 636, 2020
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.