Gravitationsfeld

In der klassischen Mechanik ist das Gravitationsfeld (auch Schwerkraftfeld) das Kraftfeld, das durch die Gravitation von Massen hervorgerufen wird. Die Feldstärke des Gravitationsfeldes gibt für jeden Ort den durch Gravitation verursachten Teil der Fallbeschleunigung an. Sie kann mithilfe des Newtonschen Gravitationsgesetzes aus der räumlichen Verteilung der Massen berechnet werden.

Die Einsteinschen Feldgleichungen d​er Allgemeinen Relativitätstheorie beschreiben d​ie Gravitation n​icht mehr a​ls Kraftfeld, sondern a​ls Krümmung d​er Raumzeit. In rotierenden Bezugssystemen, w​ie dem m​it der Erde verbundenen, besteht d​as Schwerefeld a​us dem Gravitationsfeld u​nd der Zentrifugalbeschleunigung. Ein anschauliches Modell d​es Gravitationsfeldes i​st der Potentialtrichter, i​n dem Kugeln o​der Münzen a​uf einer dreidimensionalen Trichterfläche rollen u​nd dabei d​ie Bewegung i​n der z​ur Trichterachse senkrechten Ebene simulieren.[1]

Potential und Feld

Gravitationspotential (rote Kurve) und -beschleunigung (blau) gegen den Abstand vom Erdmittelpunkt. Abweichend vom Schwerepotential wird das Gravitationspotential üblicherweise im Unendlichen auf null gesetzt.

Das zum Gravitationsfeld gehörende Potential heißt Gravitationspotential. Sein Wert am Ort lässt sich bei bekannter Massendichte durch Lösen der Poisson-Gleichung bestimmen

,

wobei die Gravitationskonstante und der Laplace-Operator ist. So beträgt das Potential um einen näherungsweise punktförmigen oder radialsymmetrischen Körper der Masse beispielsweise

.

Hierbei ist das Potential im Unendlichen. Es ist eine frei wählbare Integrationskonstante und wird üblicherweise willkürlich auf Null gesetzt.

Multipliziert man das Potential mit der Masse eines Körpers , so erhält man seine potentielle Energie

.

Das Gravitationsfeld lässt sich als Gradientenfeld des Gravitationspotentials schreiben:

.

Die vom Feld erzeugte Kraft auf einen Körper der Masse ist dann

.

Feldstärke

Die Feldstärke des Gravitationsfeldes heißt Gravitationsfeldstärke oder Gravitationsbeschleunigung . Sie ist unabhängig von der Probemasse (also der Masse des betrachteten Körpers, der sich im Gravitationsfeld befindet). Wirken keine weiteren Kräfte, so ist die exakte Beschleunigung einer Probemasse im Feld.

Eine Punktmasse verursacht das Potential

und d​aher das dazugehörige radialsymmetrische Feld m​it der Feldstärke

Diese Formel gilt auch für kugelsymmetrische Körper, wenn der Abstand vom Mittelpunkt größer ist als sein Radius. Sie gilt näherungsweise für jeden beliebig geformten Körper, wenn um Größenordnungen größer als seine Ausdehnung ist. Befindet sich eine Probemasse in diesem Gravitationsfeld, so ergibt sich

.

Dies entspricht dem Newtonschen Gravitationsgesetz, das den Betrag der wirkenden anziehenden Kraft zwischen den Massenschwerpunkten von und angibt, die sich im Abstand befinden.

Da j​ede beliebig ausgedehnte Masse i​n (annähernd) punktförmige Teilmassen zerlegt werden kann, lässt s​ich jedes Gravitationsfeld a​uch als Summe über v​iele Punktmassen darstellen:

wobei die Orte der Punktmassen sind. Für kontinuierliche Masseverteilungen gilt:

wobei die Massendichteverteilung ist.

Siehe auch

Literatur

  • Wolfgang Demtröder: Experimentalphysik 1. Springer, 2006, ISBN 978-3-540-26034-9.
  • Horst Stöcker: Taschenbuch der Physik. 6. Auflage. Harri Deutsch, Leck 2010, ISBN 978-3-8171-1860-1, S. 124.

Einzelnachweise

  1. Olaf Fischer: Planeten- und Kometenbewegung im Modell vom Potentialtrichter. In: Wissenschaft in die Schulen! Spektrum, 31. Juli 2019, abgerufen am 29. Oktober 2019.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.