Montel-Raum

Der mathematische Begriff Montel-Raum bezeichnet e​ine spezielle Klasse lokalkonvexer Räume. Ihren Namen tragen s​ie nach d​em Satz v​on Montel a​us der Funktionentheorie. Viele lokalkonvexe Räume a​us der Theorie d​er Distributionen s​ind Montelräume.

Definition

Ein lokalkonvexer Raum heißt Montel-Raum, w​enn er quasitonneliert i​st und d​er Abschluss j​eder beschränkten Menge kompakt ist.

Beispiele

  • Ein normierter Raum ist genau dann Montelraum, wenn er endlich-dimensional ist.
  • Ist ein Gebiet und ist der Raum der holomorphen Funktionen auf G mit den Halbnormen , wobei die kompakten Teilmengen von G durchläuft, so hat nach dem Satz von Montel jede in beschränkte Menge einen kompakten Abschluss. Da als Fréchet-Raum auch quasitonneliert ist, erweist sich als Montel-Raum.
  • Sei offen und der Raum der beliebig oft differenzierbaren Funktionen mit den Halbnormen , so ist ein Montel-Raum. Dabei wurde für die Multiindex-Schreibweise verwendet.
  • Sei offen und der Unterraum der beliebig oft differenzierbaren Funktionen mit einem kompakten Träger in . Für kompaktes sei der Raum der Funktionen mit Träger in K mit der von induzierten Teilraumtopologie. Dann gibt es eine feinste lokalkonvexe Topologie auf , die alle Einbettungen stetig macht. mit dieser Topologie ist der Raum der Testfunktionen und ist ein Beispiel für einen nicht-metrisierbaren Montel-Raum.
  • Sei der Raum aller Funktionen , für die alle Suprema endlich sind. Dabei wurde wieder von der Multiindex-Schreibweise Gebrauch gemacht. Der Raum mit den Halbnormen heißt Raum der schnell fallenden Funktionen und ist ein Montel-Raum.
  • Vollständige quasitonnelierte Schwartz-Räume sind Montel-Räume.
  • Jeder lokalkonvexe Raum mit der feinsten lokalkonvexen Topologie, das heißt mit der von allen absolutkonvexen, absorbierenden Mengen als Nullumgebungsbasis erzeugten Topologie, ist ein Montel-Raum.

Eigenschaften von Montelräumen

  • Montel-Räume sind reflexiv und daher tonneliert.
  • Montel-Räume sind quasivollständig, d. h. jedes beschränkte Cauchy-Netz konvergiert. Es gibt unvollständige Montel-Räume.
  • Direkte Produkte (mit der Produkttopologie) und direkte Summen (mit der Finaltopologie) von Montel-Räumen sind wieder Montel-Räume.
  • Im Allgemeinen sind weder abgeschlossene Unterräume noch Quotienten von Montel-Räumen wieder Montel-Räume.
  • Ist E ein Montel-Raum, so auch der starke Dualraum E'. Insbesondere sind also die in der Distributionstheorie auftretenden Räume , und Montel-Räume.

Quellen

  • Klaus Floret, Joseph Wloka: Einführung in die Theorie der lokalkonvexen Räume (= Lecture Notes in Mathematics. Bd. 56, ISSN 0075-8434). Springer, Berlin u. a. 1968, doi:10.1007/BFb0098549.
  • H. H. Schaefer: Topological Vector Spaces, Springer, 1971 ISBN 0-387-98726-6
  • H. Jarchow: Locally Convex Spaces, Teubner, Stuttgart 1981 ISBN 3-519-02224-9
  • R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992 ISBN 3-528-07262-8
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. The authors of the article are listed here. Additional terms may apply for the media files, click on images to show image meta data.